160 research outputs found

    Interpretation of dispersion relations for bounded systems

    Get PDF
    Constructing normal modes for bounded systems from infinite dispersion relation roots for interpretation of plasma wave and instability studies on finite cylinder

    Low-frequency macroscopic instabilities of fully ionized magnetoplasma

    Get PDF
    Studies are described of low-frequency quasi-static instabilities in a fully ionized plasma. The plasma is assumed to be immersed in a uniform magnetic field, and is either uniform or has a number density gradient perpendicular to the magnetic field. A moment equation description of the ion and electron dynamics is used; collisions are assumed to have a strong effect on electron motion along the magnetic field. Before considering specific modes, a stability analysis is developed which allows a classification of wave growth characteristics to be made for a bounded system from solutions to the dispersion relation for an infinite system. Also, a method is given for calculating the normal mode frequencies and wave profiles by using the reflection coefficients at the boundaries. For wave propagation perpendicular to the magnetic field, the flute wave is studied in cylindrical geometry. The destabilizing effect of a radial electric field is considered by solving a differential equation

    Axisymmetric Tandem Mirror Magnetic Fusion Energy Power Plant with Thick Liquid-Walls

    Get PDF
    A fusion power plant is described that utilizes a new version of the tandem mirror device including spinning liquid walls. The magnetic configuration is evaluated with an axisymmetric equilibrium code predicting an average beta of 60%. The geometry allows a flowing molten salt, (flibe-Li{sub 2}BeF{sub 4}), which protects the walls and structures from damage arising from neutrons and plasma particles. The free surface between the liquid and the burning plasma is heated by bremsstrahlung radiation, line radiation, and by neutrons. The temperature of the free surface of the liquid is calculated, and then the evaporation rate is estimated from vapor-pressure data. The allowed impurity concentration in the burning plasma is taken as 1% fluorine, which gives a 17% reduction in the fusion power owing to D/T fuel dilution, with F line-radiation causing minor power degradation. The end leakage power density of 0.6 MW/m{sup 2} is readily handled by liquid jets. The tritium breeding is adequate with natural lithium. A number of problem areas are identified that need further study to make the design more self-consistent and workable; however, the simple geometry and the use of liquid walls promise the cost of power competitive with that from fission and coal

    Recent progress of plasma exhaust concepts and divertor designs for tokamak DEMO reactors

    Get PDF
    The power exhaust concept and an appropriate divertor design are common critical issues for tokamak DEMO design activities which have been carried out in Europe, Japan, China, Korea and the USA. Conventional divertor concepts and power exhaust studies for recent DEMO designs (Pfusion = 1 – 2 GW, Rp = 7 – 9 m) are reviewed from the viewpoints of the plasma physics issues and the divertor engineering design. Radiative cooling is a common approach for the power fusion scenario. Requirements on the main plasma radiation fraction (frad main = Prad main/Pheat) and the plasma performance constrain the divertor design concept. Different challenges contribute to optimizing the future DEMO designs: for example, (i) increasing the main plasma radiation fraction for ITER level Psep/Rp designs and simplifying the divertor geometry, and (ii) extending ITER divertor geometry with increasing divertor radiation (Prad div) for larger Psep/Rp ≥ 25MWm− 1 designs. Power exhaust simulations with large Psep = 150 – 300 MW have been performed using integrated divertor codes considering an ITER-based divertor geometry with longer leg length (1.6 – 1.7 m), as in a common baseline design. Geometry effects (ITER like geometry or more open one without baffle) on the plasma detachment profile and the required divertor radiation fraction (frad div = Prad div/Psep) were key aspects of these studies. All simulations showed that the divertor plasma detachment were extended widely across the target plate with a reduction in the peak heat load of qtarget ≤ 10 MWm− 2 for the large frad div = 0.7 – 0.8, while the peak qtarget location and value were noticeably different in the partially detached divertor. Simulation results also demonstrated that radial diffusion coefficients of the heat and particle fluxes were critical parameters for DEMO divertor design, and that effects of plasma drifts on outboard enhanced asymmetry of the heat flux, suggested the need for longer divertor leg to ensure the existence of a detached divertor operation with qtarget ≤ 10 MWm− 2 . Integrated design of the water cooled divertor target, cassette body (CB) and cooling pipe routing has been developed for each DEMO concept, based on the ITER-like tungsten monoblock (W-MB) with Cu-alloy cooling pipes. Engineering design adequate under higher neutron irradiation condition was required. Therefore, inlet coolant temperature (Tcool) was increased. In current designs, it still shows a large potential variation between 70 ◦C and 200 ◦C. The influence of thermal softening on the Cu-alloy (CuCrZr) pipe was fostered near the strike point when the high qtarget of ~10 MWm− 2 was studied. Improved technologies for high heat flux components based on the ITER W-MB unit have been developed for EU-DEMO. Different coolant conditions (low- and high Tcool) were provided for Cu-alloy and reduced activation ferritic martensitic (RAFM) steel heat sink units, respectively. The high-Tcool coolant was also considered for the CB and supporting structures. Appropriate conditions for the high-Tcool coolant, i.e. 180 ◦C/ 5 MPa (EU-DEMO) and 290 ◦C/ 15 MPa (JA-DEMO, CFETR and K-DEMO), will be determined in the future optimizations of the divertor and DEMO design
    • …
    corecore