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ABSTRACT

This thesis describes a series of studies of low-frequency quasi-

static instabilities in a fully ionized plasma. The plasma is assumed

to be immersed in a uniform magnetic field, and is either uniform or has

a number density gradient perpendicular to the magnetic field. A moment

equation description of the ion and electron dynamics is used; collisions

are assumed to have a strong effect on electron motion along the magnetic

field. Before considering specific modes, a stability analysis is

developed which allows a classification of wave growth characteristics

to be made for a bounded system from solutions to the dispersion relation

for an infinite system. Also, a method is given for calculating the

normal mode frequencies and wave profiles by using the reflection

coefficients at the boundaries.

For wave propagation perpendicular to the magnetic field} the flute

wave is studied in cylindrical geometry. The destabilizing effect of a

radial electric field is considered by solving a differential equation.

Both analytic and numerical solutions are given which include the eigen-

frequencies and eigenfunctions. The effect of the plasma column being

radially bounded is investigated, and results of previous workers are

generalized. The transition to Kelvin-Helmholtz instability is illustrated

for sharp rotational shear of the column. In addition, two instabilities

observed in a hollow cathode arc discharge experiment carried out at

Stanford are identified as flute instabilities.

For propagation at an angle to the magnetic field, resistive drift

waves driven unstable by a density gradient are considered in rectangular

geometry. A general dispersion relation is derived which includes ion

axial motion, electron heat transfer, and electron axial drift. Comparison

is made with dispersion relations of other authors, and the effects of

these terms on the wave solutions are illustrated; both frequency and

values of the first order variables are given. The solutions are inter-

preted for bounded systems, using the method presented in the thesis.

This provides a proper explanation of some experimental results obtained

elsewhere from a drift wave experiment in a Q-machine. The character-

istics of an entropy or temperature wave are also studied.
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For propagation parallel to the magnetic field, the stability of

ion-acoustic waves is studied; frequency and values of the first order

variables are again given. The destabilizing effect of electron drift

is investigated, and it is shown that an estimate of the threshold drift

for instability given by other investigators is too large if T. < T }

due to collisibnal energy exchange between electrons and ions. Further,

instability is found in the absence of an electron drift when 2T. < T ,

again due to collisional energy exchange. Normal mode solutions for a

bounded plasma are also given. These results are valid for a plasma in

which the temperature difference is maintained by an external source.

In addition, the case of a plasma equilibrating in time (T. -* T ) is

considered, and it is found that here ion-acoustic instability should

not grow to a significant amplitude.
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1. INTRODUCTION

The primary purpose of this research is to obtain the characteristics

of quasistatic instabilities in a fully ionized plasma. These

instabilities will be studied in the low-frequency range below the ion

plasma frequency, to ., and generally below the ion cyclotron frequency,
pi

w (10 < to in all plasmas of interest here), when a static magnetic
ci ci pi

field is present. The instabilities considered arise in plasmas for

which a moment equation description of the ion and electron dynamics is

appropriate. This applies to those plasmas in which the effects of

particle motion are localized spatially, typically by a magnetic field

for motion perpendicular to the field, and by collisions for motion

parallel to the field. Specific criteria will be discussed in Sections

3 and 4.

It will be useful to keep in mind the following features of these

instabilities. First, the motion of the ions is usually the more involved;

that of the electrons is simply described as the motion of an inertialess

fluid. This is in contrast to high-frequency instabilities and waves

with frequencies of the order of the electron plasma or cyclotron

frequencies, where the ions can be assumed to form a stationary background,

since their mass is much larger than that of the electrons. Second, for a

plasma configuration to be unstable, one should be able to identify a

source of energy for the instability. This source often takes the form

of a drift motion of the particles, as arises, for example, when a DC

electric field is present. For an electric field perpendicular to the

magnetic field, an EX B/B Hall drift velocity arises for both electrons
r*~t ~J

and ions; for an electric field parallel to the magnetic field, a parallel

drift arises with the velocity of the electrons being much larger than

that of the ions. The kinetic energy available from these particle drifts

may also be supplemented by the potential energy which arises from plasma

inhomogeneities, such as a pressure gradient. Sometimes a combination of

these sources is needed for instability, as we shall see in Section 3.

Interest in low-frequency instabilities arises from studies of both

man-made and naturally occurring plasmas. For man-made plasmas, the most

ambitious goal has been to confine a hot, dense plasma long enough to



attain controlled thermonuclear fusion. In the late 1950's, confinement

of particles by a magnetic field seemed promising, but it was found that

increasing the magnetic field strength did not always lead to the
2

expected increased confinement either for weakly ionized plasmas or for
3

fully ionized plasmas. The cause of this was later identified as plasma
4 5

instabilities, ' which arose due to the combined effects of a density

gradient and particle drifts. Growth of these instabilities leads to an

increase in the flow of plasma (both ions and electrons) to the wall,

over what occurs for a stable configuration. This is known as

"anomalous" diffusion. In this connection, it is important to note that

it is the low-frequency instabilities, affecting both ion and electron

motion, which are potentially harmful to plasma confinement; the high-

frequency instabilities have little effect on the ions, unless they

couple nonlinearly to low-frequency waves.

From the 1960's to the present, there have followed extensive

investigations of plasma instabilities, both theoretical and
c.

experimental. Investigators turned to devices such as the Q-machine,
7

and the positive column, to study the basic wave properties of plasmas

without the greater complexities of fusion study devices. The interest

in collisional plasmas has come from these lower temperature devices,

where Coulomb collisions and/or charged particle-neutral collisions can

have an important effect on stability. However, even in fusion

study devices such as the stellarator, instabilities in the initial
Q

plasma heating stage may be described by collisional theory. Further-
9

more, it has been argued very recently that collisional instabilities

may occur in high temperature fusion devices such as the Tokamak, where

the required localization of particles is caused by small-scale

turbulence rather than classical particle collisions. Thus, there are

a number of man-made plasmas in which low-frequency collisional

instabilities may arise.

For naturally occurring plasmas, the ionosphere exhibits several

phenomena which are believed to be produced by low-frequency plasma

instabilities. Spread-F, which is the spreading of the height of the

F-layer on iohosonde records, has been observed since 1938, and is

associated with irregularities in the plasma density of the F-layer. A

2



number of theories have been proposed to explain its origin, and though

none is conclusive, it is believed to be due to plasma instability.
12

Farley has identified an instability which arises in the equatorial

electrojet as being due to a relative Hall particle drift in a weakly

ionized plasma. Finally, plasma instability is thought to be responsible

for the enhanced energy transfer between electrons and ions (i.e., over

collisional effects) required to obtain agreement between theoretical and
13

measured values of electron and ion temperatures in the solar wind.

We shall now consider a more detailed review of the subject matter

of this work. In Section 1.1, a discussion is given of the method by

which plasma stability is determined; Section 1.2 contains a discussion

of the low-frequency instabilities to be studied.

1.1 Stability Analysis

In order to determine the stability of various plasma configurations,

a linear perturbation analysis is carried out on the equations which

describe the configuration. Infinite rectangular geometry is often used,

and for spatial directions x., along which the plasma is uniform, a
*J

spatial dependence of exp(-ik.x.) is assumed, where k. is the wave-
J \J J

number in the x .-direction. This corresponds to considering a single
J

wavenumber component in a Fourier transform for an unbounded system, or

a single mode, if a finite plasma with periodic boundaries is assumed.

Thus, k is usually taken as real. For directions in which the plasma

is not uniform, a general spatial dependence of the variables must be

allowed for, which leads to a differential equation in that coordinate

when the perturbed equations are combined. However, an exp(-ik x)
X

spatial dependence can also be assumed in a direction where the

inhomogeneity is not too strong, the condition usually being taken as

k » C dC/dx, where C is the inhomogeneous steady state parameter.
X

This is known as the local approximation, and is discussed in greater

detail in Section 4.1.3.

Similarly, the perturbed variables are assumed to have a time

dependence of exp iwt when the zero order plasma properties are

constant in time, which is equivalent to Fourier transforming in time.

In combining and solving the perturbed equations, including the



differential equations appropriate to inhomogeneous plasmas, a dispersion

relation, D(oj,k) = 0, is obtained. This specifies the relation between

to and k for perturbations varying as exp i(wt-k'r).

The stability of the plasma configuration is determined by studying

the characteristics of D(cj,Jp = 0. Most often, u> is considered to be

the dependent complex variable, with k being the independent real

variable. If some value of k yields a value of u with a negative
-̂/

imaginary part, and if a monochromatic plane wave could be set up with

that spatial dependence, it would grow in time, and the plasma would be

unstable. Presumably the plane wave with the minimum imaginary part of

LO for a real k would be dominant after a long time.

On the other hand, to describe the propagation of a wave away from

some point in space, it would seem more appropriate to solve D(u),k) = 0

for real u> and complex k, the implication being that the instabilities

grow in space rather than in time. An additional ambiguity which arises

is that, for active systems, it is not clear whether the imaginary part

of k corresponds to growth in one direction or decay in the opposite

direction. These difficulties were first clearly pointed out in the
14 15

early 1950's by Pierce and Twiss in connection with plasma streaming

instabilities. Twiss indicated that the difficulty lay in the formulation

of the problem, and that two types of instabilities could arise if the

more realistic problem of response of the system to a localized

disturbance was considered. This approach to the stability analysis has
16— 21

received much attention in the last fifteen years.

In 1958, Sturrock considered this type of problem for the response

of a system described by two coupled modes to a localized disturbance

switched on at time t = 0. He showed how to distinguish, purely from the

topology of the conformal mappings of D(oj,k) = 0, between two types of

instabilities: the absolute instability which grows in time, and the

convective instability which grows in space. These definitions will be made

more precise in Section 2.1. Since the source is switched on at time

t = 0, the analysis must be for an initial value problem, so the Laplace

transform is used in time. The time variation of exp iiot can still be

assumed, but the inversion of the Laplace and Fourier transforms must be

performed to determine the response, which will be a wave packet rather



than a plane wave. The medium is still described by a dispersion

relation D(to,k) = 0, and the expression [D(u),jc)J may be considered

the transform of the Green's function for the system, as seen in Section

2.1. Subsequently, a number of workers have developed these ideas to
17—21

varying degrees of generality. However, all of these analyses apply

to media which are infinite and uniform in the directions that the Fourier

transform is applied, and, since all physical systems are bounded, leave

open the question of how to interpret the behavior of bounded systems

from wave solutions obtained for infinite media. The answer to this

question for certain systems is the major contribution of Section 2.

There are situations in which one may argue the validity of using

the results obtained from an infinite model directly in explaining the

behavior of a physical system. In these cases, the boundaries should

have no appreciable effect on the waves, something which is often

tacitly assumed, but rarely shown, in comparisons between theory and

experiment. If the boundaries could be made effectively reflectionless,

the system would appear infinite as far as the waves are concerned. This

can be achieved, for example, with ion-acoustic and drift waves on a
22

long discharge column, where the axial magnetic field lines diverge

slowly at the ends of the column, and the electrodes are located well

beyond the uniform field region. The waves are effectively absorbed in

the boundary region. Also, in applying the theories to practical

geometries, periodic boundary conditions may be used for coordinates

which close on themselves. For instance, drift modes derived in

rectangular coordinates (x,y,z) are adapted to cylindrical geometry

(r,8,z) by identifying k with m/a for waves varying as exp(-im6),

where m is the azimuthal mode number, and a is the radius at which

the wave is localized (see Section 4). However, as we shall see in

Sections 3 - 5 , the effect of the boundaries can be important for plasma

stability.

One approach to including the effect of boundaries is to consider

each particular experimental configuration separately, and apply the

appropriate boundary conditions determined by detailed physical
23— 28

considerations. This approach has been taken by a number of authors,

but the analysis is often quite involved, and the results only applicable

5



to the specific problem. It is, however, the only completely

satisfactory way to solve the problem of a bounded plasma. There are

two reasons for this. First, boundaries can support surface waves

which are not accounted for in the infinite plasma dispersion relation;

second, the boundaries will in general couple the linearly independent

modes of the infinite plasma dispersion relation together, along with the

surface waves, in order to satisfy the appropriate boundary conditions.

There are systems for which it is sufficient to use a less detailed

approach to determine the effect of boundaries. For example, in ideal

acoustic or electromagnetic resonators, there are no surface waves, and

the normal modes can be interpreted in terms of the dispersion relation

for the waves of an infinite system. Also, the effect of a lossy

boundary, or one which couples linearly independent modes, is often

accounted for by ascribing a reflection coefficient to the boundary for

the dominant wave of the system. Since there are many existing theories

of plasma waves in an infinite medium, it would be useful to develop a

similar technique in which the infinite system dispersion relation can be

used to determine the behavior of bounded plasma systems. We treat this

problem in Section 2, and show, subject to certain restrictions, how to

interpret such theories for bounded systems.

1.2 Low-Frequency Instabilities

1.2.1 Waves Propagating Perpendicular to the Magnetic Field
29

In 1954, Kruskal and Schwarzschild used the single-fluid

MHD equations to show that a plasma supported against gravity by a

magnetic field can be unstable to flute-like perturbation on the plasma

boundary (i.e., no variation along the magnetic field direction). The

instability is analogous to the Rayleigh-Taylor instability of ordinary

hydrodynamics, which develops when a heavy fluid is supported against
30

gravity by a lighter fluid. Several years later, Rosenbluth and Longmire

considered the same instability using the guiding-center equations for

the particles, and gave a clear physical explanation of how it develops.
31

A kinetic treatment of this flute wave revealed that the finite ion

Larmor radius has a stabilizing effect, a point confirmed both by a
32 33

moment equation approach including collisionless viscosity, ' and by



34.35
the guiding-center equations. The stabilization is due basically

to the ions sampling the perturbed electric field over their gyro-orbits.

The form of this instability studied in Section 3 arises in

a plasma column immersed in an axial magnetic field, which may rotate

due to a radial electric field. The inertia or centrifugal force effect

on the ions is analogous to a gravitational force, and the radial density

varies continuously, but decreases with radius. When the electric field

is a linear function of radius and the density profile is Gaussian, the

column rotates uniformly, and one obtains a second order differential
31 33

equation in combining the perturbed equations. ' For nonuniform
o c

rotation, Rosenbluth and Simon give the resulting second order

differential equation as obtained from a new set of moment equations

derived from kinetic theory. To derive these moment equations, quantities

are ordered in a manner more consistent with a finite ion Larmor radius

than are the usual moment equations. However, it turns out that this

differential equation can also be derived from the usual moment equations,

which is the approach used in Section 3.

We consider solutions to this equation for both uniform

rotation, when analytical results are obtained, and for nonuniform

rotation, when numerical methods are used. Particular attention is paid

to the radial extent of the column, as this has a strong influence on

the stability of the waves. The effect of nonuniform rotation due to

the radial electric field is considered for the lower order azimuthal

modes, including the transition to rotation with a sharp shear. For

this latter case, the additional destabilizing mechanism of velocity
37 o g

shear can lead to a Kelvin-Helmholtz instability. ' Finally, two low-

frequency instabilities in a hollow cathode arc discharge experiment are

identified as the type of flute wave studied here.

1.2.2 Waves Propagating at an Angle to the Magnetic Field

When the preceding problem is generalized to allow propagation

at an angle to the magnetic field, a new instability can develop in the

presence of a density gradient alone. This is the collisional drift wave
39 40 41

first discussed by Moiseev and Sagdeev in 1963, and by Chen ' in

1964-65. The drift wave propagates in the direction of the electron



diamagnetic drift, and the axial (i.e., along the magnetic field)

resistivity of the electrons can maintain a phase shift between the

perturbed density and potential to produce instability. The dispersion

relation describing this wave is usually derived from the moment

equations, although it can be treated from kinetic theory by using an
42

appropriate collision, term. There is also a counterpart to this

instability for a collisionless plasma, where resonant particle effects

replace resistivity in maintaining a phase shift between the perturbed
42

density and potential.

In the early treatments of collisional drift waves, it was

found that any density gradient could produce instability, so it was

sometimes referred to as a "universal" instability. However, including

the effect of collisional viscosity (ion-ion collisions) can stabilize
43

the instability, as discussed by Hendel et al. Another modification

to the drift wave arises when ion and electron heat conduction are
44 45

included in the theory, as shown by Galeev e_t a\., and by Tsai et al.

The effect of ion heat conduction is very small, but that of the

electrons can be significant. In fact, the inclusion of the electron

heat conduction along the magnetic field is needed to obtain a

destabilizing effect from an axial electron drift (a current) for the
8,28

drift wave. This is in contrast to the drift wave found for weakly

ionized plasmas, where charged-neutral particle collisions are important,

and an isothermal theory reveals a destabilizing effect due to axial
46

electron drift.

In Section 4, we first derive a general dispersion relation

for the drift waves, and then systematically examine the various

approximations to it which give the dispersion relations of other authors.

The effects of these approximations are illustrated for parameters

appropriate to a Q-machine experiment, using the procedure obtained in

Section 2 for determining the stability of bounded plasmas. These

results allow us to correctly explain a recent drift wave experiment in
47

a Q-machine.



1.2.3 Waves Propagating Parallel to the Magnetic Field

When one restricts the direction of propagation of the waves

to lie along the magnetic field, they become ion-acoustic waves of the •
48

type first studied by Tonks and Langmuir in 1929. These waves are

similar to sound waves in a neutral gas, except that there are Coulomb

forces present; these cause the waves to be driven by a combination of

the electron and ion pressures, while the inertia is due to the ions.
49-52

Kinetic treatments of these waves for a collisionless plasma in the

early 1960's indicate stability in the absence of electron drift. The

waves are Landau damped by the electrons and ions, the latter predominating

except when T. « T . In the presence of electron drift, resonant

particle effects can produce instability when Landau amplification by

the electrons offsets Landau damping by the ions. For a weakly ionized

magnetoplasma, with T. « T , Self has discussed ion-acoustic
i e

instability due to electron drift, using the moment equations with the

isothermal assumption. In this case, the destabilizing effect of drift

results from electron-neutral collisions, and offsets ion-neutral

collisional damping.
8

For fully ionized collisional plasmas, Coppi and Mazzucato

have found ion-acoustic instability due to electron drift only if

electron heat conduction is included, as for collisional drift waves.

In Section 5, we treat this instability in detail, and show, in addition,

that electron viscosity and collisional energy transfer between electrons

and ions at different temperatures (T. <T ) can also produce instability.

Electron drift is required to make the electron viscosity destabilizing,

but a temperature difference can produce instability without electron

drift. This latter effect is analogous to a. neutral sound wave
53

instability in a weakly ionized plasma studied by Ingard and Schulz

which is driven by collisional energy transfer between electrons and
54

neutrals with T < T . Schulz also suggested the occurrence of this
n 6

type of instability in fully ionized plasmas, as studied in Section 5.

Again, the analysis of these waves includes a description of their

behavior in bounded systems using the methods of Section 2.

In conclusion, it should be noted that we follow the classi-

fication of the wave types by the direction of propagation because of



historical development, and for.simplicity of the analysis. As the

angle of propagation with respect to the magnetic field is varied

continuously, one wave type may evolve into another, or one wave type

may become more unstable than another. As far as possible, we shall

point out the connections between the wave types in the study to

follow, particularly in Section 4.



2. STABILITY ANALYSIS FOR BOUNDED MEDIA

In this section, we give a formal procedure for interpreting the

solutions to the dispersion relation of a system,

D(u),k) = 0 , (2.1)

where D(io,k) is the dispersion function. This dispersion function is

obtained by perturbing to first order the equation describing the system,

and then eliminating the perturbed variables among these equations. The

presence of the wavenumber k implies that the equations have been

Fourier transformed along the direction of k, and that the system is
"̂

infinite in this direction. Similarly, the equations have been Fourier

or Laplace transformed in time, so Eq. (2.1) describes the relation

between u) and k for linear perturbations varying as exp i(wt-k'r).
t̂* *"W -~*̂

The system is said to be unstable if a real k yields a complex to

with a negative imaginary part, i.e., Im(co) < 0, for the perturbation

then grows in time. For an infinite system, k is assumed to take on

any real value.

As mentioned in Section 1, a number of authors have already

considered improvements to this method of stability analysis. Most of

these follow Sturrock, who has clearly pointed out the importance of

considering the perturbation to be localized in space, i.e., a wave

packet, rather than a physically unrealizable monochromatic plane wave.

In this case, [D(w,k)] acts like the Laplace-Fourier transform of the

Green's function for an initial value problem, and one must invert the

Laplace and Fourier transforms to determine the wave packet response.

The system is still unstable if any real k yields an Im(u)) < 0, but

the characteristics of the instability may be changed. We shall review

this procedure for infinite systems in Section 2.1.

In using the results obtained from an infinite system to interpret

experimental results, one must use caution, for all real systems

are bounded. Thus, in Section 2.2, we consider the stability analysis for

bounded systems which can be treated as a section of an infinite system.

Strictly this is applicable to media which can be described by the fluid

11



equations, as discussed in Section 2.2.1. In such a case, Eq. (2.1)

still describes the medium, but the boundary conditions now restrict the

values of k.

2.1 Waves in an Infinite Medium

2.1.1 Basic Model

We consider a time-invariant system of general cylindrical

form, infinite and uniform along z. It is assumed that the transverse

eigenvalue problem has been solved for the perturbed equations, so that

the perturbations now vary as exp i(wt - kz). A single linearly

independent transverse eigenmode is considered with a dispersion relation

of the form of Eq. (2.1) when the vector on the wavenumber is dropped,

i.e., D(co,k) = 0. For simplicity, D(co,k) is taken to. be a polynomial

of order d. in LJ and of order P in k, as is the case for the fluid
17

treatment of plasmas. Derfler discusses cases when D(w,k) is a

double-valued function as arises, in general, in the kinetic theory of

hot plasmas.

We consider the initially quiescent system to be excited by
19

a localized source, s(t,z), following the approach of Briggs. The

source has the form s(t,z) = g(z)f(t), where g(z) = 0 for | z| > d , and

f(t) = 0 for t < 0. To find the spatial and temporal response of the

system to such a source, we must perform the inverse Laplace and Fourier
19

transforms. The system response can thus be written

2 oo °o+i0

4<(t,z) = h^j J j G(u),k) f(w) g(k) exp i(wt-kz) dudk . (2.2)

— ̂ _00+ 3J7

Here f represents any first order variable, f(w) is the Laplace trans-

form of f(t), g(k) is the Fourier transform of g(z), and G(u,k) =

[D(io,k)J is the Laplace-Fourier transform of the Green's function.

The Fourier integral path (FIP) is taken along the real k-axis, while

the Laplace integral path (LIP) is taken below all singularities of the

integrand, i.e., a sufficiently negative, as dictated by causality. The

response can be written in a more useful form if we interchange the order

of integration. This yields

12



F(w,z) f(w) exp iwt du> , (2.3)

where
CO

F(U),Z) = ̂ - I G(w(k) g(k) exp (- ikz) dk . (2.4)
n̂ ĵ

Equations (2.3) and (2.4) give the required mathematical

formalism for finding the response of the system to some source. We will

apply it to the two most general questions of interest. The first question

relates to determining the natural response of the system; that is, what

is the response to an impulse source in space and time? If the natural

response eventually grows indefinitely in time at a given position, the

system cannot reach a linear steady state. On the other hand, if the

response eventually decays at a given position, one may inquire into the

second question, which relates to the forced response of the system;

that is, what is the response to a localized steady sinusoidal source

switched on at t = 0?

2.1.2 Natural Response

To study the natural response of the system, we let f(t) =

6(t), where 6 (t) is the impulse (or delta-) function. In order to use

contour integration in evaluating the integrals of Eqs. (2.3) and (2.4),

we shall be interested in the singularities of the integrands. Consider

first the evaluation of F(u,z) for any to = u on the LIP. Since
L

g(z) is localized, then, for any physically realizable form, g(k) is

an entire function, i.e., it has no singularities in the finite k-plane.

Thus, the only possible singularities in the integrand of Eq. (2.4) are

those of G(io,k). In the simple cases to which the present discussion

is limited, these singularities of G will be poles at the zeros of

D(u),k). A sketch of these zeros in the k-plane is shown in Fig. 2.1 (a).

The dotted lines indicate the loci of the zeros as Im(io) is increased

for constant Re(w), as shown by the corresponding dotted line in Fig.

2.1(b). As co traverses the LIP, one of these zeros may appear on the

real k-axis. This corresponds to the LIP intersecting one of the to

(k real) contours, where w is a solution to D(cj,k) = 0, as shown in

13
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(a)

(b)

Fig. 2.1 (a) The loci of the zeros of D(to,k) in the k-plane when

increases for constant Re(w). (b) The corresponding path taken by u

is shown by the dotted line. Solid lines in (b) represent u) (k real)

contours.
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Fig.2.1(b). However there is then an ambiguity in the k-integration as

to which direction to integrate around this pole on the real k-axis.

This is resolved by initially taking the LIP low enough in the to-plane

so that the zeros of D(tJ ,k) are off the real k-axis; that is, rs = a ,
L 0

where 0 is less than the minimum imaginary value of ^(k real). Only

then do we unambiguously satisfy causality, which is proved as follows.

With Im(to) < a , we may label the zeros of D(u),k) in the k-plane as k

or k , depending on whether or not they appear in the lower or upper

half planes, respectively, as shown in Fig.2.1(a). F(to,z) can now be

evaluated by contour integration, with the contours being closed in the

lower half k-plane for z > 0 and in the upper half k-plane for z < 0.

It is clear that F(to,z) is nonsingular for any to below a in the

to-plane. Causality is thus assured, since, for the to-plane integration

in Eq. (2.3), we may close the contour in the lower half plane for

t < 0, enclosing no poles [f (to) = 1 here], and thus giving ty(t,z) = 0

for t < 0. As we shall see, the asymptotic natural response does not

depend on the explicit evaulation of F(to,z) for these simple poles,

although we will need to return to this evaluation for the forced

response in Section 2.1.3.

In order to find the asymptotic time response of the system,

we wish to deform the LIP as far as possible upward, where it will become

clear that the asymptotic response is governed by the lowest singularity

of F(to,z). As the LIP is raised in the to-plane, e.g., (7 -• CT , the poles

due to G(to , k) will cross the real k-axis when the LIP intersects the
L

lowest branch of to (k real). When this happens the function F must
a ~

be redefined as its analytic continuation, F, as the FIP is deformed to

continue to include the same poles as before. This is illustrated in

Fig. 2.2, where we show, along with the deformed FIP, the loci of two

poles of G(to ,k) in the k-plane for several LIP's. The poles may be
L .

compared with k and k in Fig. 2.1(a). These loci are the contours

of to = to + ia, as shown in Fig. 2.3, in the map of to into the k-
Li . r L

plane via D(to ,k) = 0. Also shown in Fig. 2.3 is a branch of the u)
L Q

(k real) contour [see Fig. 2.1(b)].
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The LIP may be continuously raised (fT -» ff ) until two poles of
£

G(co , k) collide or merge through the FIP, pinching it between them, as
L

shown in Fig. 2.2. When this happens, at (to , k ), we have a double root
s s

k (to ) of D(to,k) = 0, i.e., a saddle point of to(k) in the map of LO
s s
into the k-plane or, equivalently, a branch point of k(to) in the map

of k into the to-plane via D(to,k) = 0. In raising the LIP still further

(a -» CTo), it must be deformed around the branch cut of which the branch
«3

point (u ,k ) forms one end point, as shown in Fig. 2.3. The
S S

asymptotic response is clearly governed by the lowest such branch point
19

in the to-plane and can be evaluated as

g(k ) exp i(to t - k z)
s - ! S— (t

Vks

In general, saddle points of w(k) , i.e., the branch points of

k(to), are given by the simultaneous solution of D(w,k) = 0 and

dD/dk = 0. However, not all such saddle/branch points are relevant to

the stability analysis, but only those which correspond to the merging

of roots k(co) for D(to,k) = 0 from opposite half k-planes, and thus

pinch the FIP. If the lowest such branch point (to' , k ) lies in the
s s

lower half plane (to < 0), the response eventually increases without
si

limit (in a linear analysis) at all finite z, as described by Eq. (2.5),

and the system is by definition absolutely unstable. On the other, hand,

if the lowest such branch point lies in the upper half plane (to . > 0),
S 1

the response eventually decays to zero at all finite z, according to

Eq. (2.5). In this case, if the system supports instabilities, i.e., if

any to-v,(k real) contour dips below the real to-axis, it is convectively
(_Jt , ^̂ ^̂ ™̂«̂ ^̂ ^̂ ™̂.«*«"M̂ ^̂ —

unstable, and the perturbation grows but convects away. In all cases,

the asymptotic response has an exponential envelope in space (except

near the front of the disturbance) given by exp (-k . z) .
si

The essential difference between absolute instabilities and

convective instabilities is shown in Fig. 2.4. For a system which is

absolutely unstable, any random noise will grow and saturate in a

18
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nonlinear state, so that further linear analysis is not appropriate.

However, since for convectively unstable or stable systems the natural

response eventually decays, one may consider the response to a

continuous forcing function. We might expect a convectively unstable

system to exhibit spatial amplification. A more detailed explanation of

the convective instability is given in the next subsection.

2.1.3 Forced Response

We consider a localized sinusoidal source switched on at

t = 0, i.e., s(t,z) = 6 (z) exp iw t for t > 0, where u is real.
0 -1

This gives g(k) = 1, and f(to) = [i(u)-w )] . We are again interested

in the asymptotic response, so the LIP is moved upward to evaluate Eq.

(2.3). The system is assumed free of absolute instabilities, so that

any branch points in the u>-plane due to the colliding of poles are in

the upper half u^plane. The first singularity encountered in the

integrand of Eq. (2.3) by moving the LIP upward is due to f(u) at

on the real w-axis. The asymptotic response is thus determined

by EC(

To evaluate F(w ,z), which is the analytic continuation of

Eq. (2.4), we use contour integration as mentioned in Section 2.1.2. The

integration contour is closed in the upper half k-plane for z < 0 and

in the lower half k-plane for z > 0. The poles of G(w , k) included

in the upper half plane and lower half plane contours occur at

k = kg(u) ) and k = kg(io ), respectively. It is important to note that

some of the k,,(co ) may actually be in the lower half plane and some of

the kp.(u) ) .in the upper half plane. These are the poles which cross

the real k-axis as the LIP is raised from (7 to the real co-axis. In

defining F(to , z) as the analytic continuation of F(co ,z), the contour

along the real k-axis is deformed to always include the same poles as

when <j = a (see Fig. 2.2); that is, the positions of the poles on the

initial cr contour determine whether they appear in the response for

z > 0 or z < 0.

By the theory of residues, Eq. (2.4) can be evaluated as

20



F(u}Q,z < 0) S
p

exp(- ikRz)
(2.6)

F(V.
i exp(- ikRz)

P
3k

(2.7)

P

where, for simplicity, we have only considered simple poles. From Eq.

(2.2), we see that the asymptotic response is

i|r(t,z) F(UJ . z) exp iu) t (t (2.8)

Note that if any of the kr have crossed the real k-axis as the LIP

was moved upward from <r to the real co-axis, they now appear as

spatially amplifying waves in the response. This is the condition under

which a system is convectively unstable. If none of the kg has crossed

the real k-axis, all of the waves decay away from the source, and the

system is stable. In general, several waves will be excited by the

source (different P's), but, as | z| increases, the wave with the

smallest spatial damping rate or largest spatial growth rate will

ultimately dominate.

2.2 Waves in a Bounded Medium

2.2.1 Physical Model

In this subsection, we discuss the response of a uniform

cylindrical system, as in Section 2.1.1, but now of finite length, L,

with arbitrary terminations at z = - L/2 and z = L/2. The response

will be determined from the appropriate roots of the linear dispersion

relation of an infinite system containing the same medium,together with

the boundary conditions'.
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The conditions under which it is valid to treat the finite

system as a terminated length of an infinite system need some discussion.

Briefly, it is valid for ordinary dielectrics and cold plasmas and also,

subject to conditions discussed later, for fluids and plasmas treated

via fluid equations. It is not, however, in general valid for collision-

less plasmas treated by kinetic equations. The reason for the distinction

between dielectric or fluid treatments on the one hand, and kinetic

treatments on the other, is that in the former the particle dynamics used

to calculate the charge, p, and current, J, in Maxwell's equations are

determined purely by the local fields E and B, whereas in the latter,

p and J are determined via integrals over the particle trajectories,
~" 23-26

including earlier encounters with the boundaries. Thus in a cold

or fluid model, a boundary imposes conditions on the fields and fluid

variables only at the boundary, whereas in a kinetic model, the effect

of the boundary conditions on the particles is felt on the particle

dynamics throughout the system.

For simplicity, we assume that the dispersion relation is

quadratic in k, which can be written as

D(u),k) = k2 + b(u))k + c(to) = 0 , (2.9)

or

D(co,k) s [k - k+(w)][k - k (u>) ] = 0 . (2.10)

These can be solved to yield the relation

. _ o
k - k = ± b (to) - 4c(u)r'~ . (2.11)

The roots k and k are taken to be excited on opposite sides of a

source. More explicitly, from the analysis of Section 2.1.3, k and k

must lie in the lower and upper half k-planes, respectively, as .w. -• -<=.'

There are special cases for which both waves are excited on the same side

of a source. For example, a cold beam-plasma system with
O p p p

D = 1 - to /u) - to /((jj-kv ) has two k roots corresponding to waves

excited on the downstream side. Here w and u> are the plasma
p b

frequencies of the background plasma and beam, respectively, and v is

22



the beam velocity. In such cases, the downstream boundary can produce

no effect upstream, so the waves act as though the boundary were not

present. Finally, the case when a dispersion relation is of higher

order than quadratic in k is discussed in Section 2.2.5.

The boundaries are described by complex reflection coefficients,

P and D , for the boundaries at z = - L/2 and z = L/2, respectively,
J. £i

as shown in Fig. 2.5. Specifically, p and p give the ratio of the
J. £

reflected wave to the incident wave at the boundary, and have the forms

pl = exp ± exp ± (2.12)

where 0 1 and -it < n. It is assumed that the phase" i o I "•**« -» _ f

of the reflected wave is given, either from physical arguments or by

experiment, as leading or lagging the incident wave by a certain angle

|9|, and the convention is adopted that 9 > 0 when the reflected wave

leads and 9 < 0 when it lags. In order to preserve this convention,

irrespective of the sign of to , the alternate signs are introduced in

Eqs. (2.12), and should be taken as + or - for co < 0, respectively.
r

Also, p and p may be functions of the frequency, w, although this

dependence will not be shown explicitly in what is to follow.

1/
','/

S( t ,Z )= f 0 ( t )S (2 )

i i

"' 2 "̂*~

î
\

Î _WB

-L/2 L/2

Fig. 2.5 Bounded system with reflection coefficients p and

P , defined in Eq. (2.12), and source s(t,z).
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For simplicity, we consider the source to be localized at

the origin, i.e., s(t,z) - f(t)6(z), since the form of the asymptotic

natural response is independent of the position of the source. This is

proved in Appendix A, where we derive the response of a system to an

arbitrarily positioned source. The results of this more general

analysis will be used in Section 2.2.4 to study the forced response.

2.2.2 Mathematical Model

If we are to use the methods of Section 2.1 in .evaluating

the response of a bounded system to some source, our model must be

modified. We have to account for the waves reflected from the boundaries,

and produce a spatially infinite and uniform model to use the Fourier

transform method of Section 2.1. The reflected waves can be accounted

for by using an infinite train of image sources, each one representing

a reflected wave. This is akin to the method of images used in

electrostatics. Care must be exercised, though, as waves from these
- +

image sources must sometimes propagate as k waves, and sometimes as k

waves, to model the system properly.

As an intermediate step, we define the reciprocal medium as

the medium with the dispersion relation

D(u,-k) = 0. (2.13)

The bounded system can now be modeled as in Fig. 2.6, where we have

included the image sources. The clear area denotes the regular medium,

and the shaded area denotes the reciprocal medium. These areas alternate

spatially at odd multiples of L/2. It is understood that the boundaries

between the media have no effect other than to convert a k wave into a

k wave and vice versa. This, of course, does not correspond to a

physically realizable model, since in that case there would be reflections

from the boundaries between the different media. However, for the

bounded system, this effect is included in the reflection coefficients,

P^ and P2> and, in our model, we choose to account for the reflection

coefficients in determining the amplitudes and phases of the image

sources. So, given the initial source f (t), a general expression for

the source f (t), where n is an integer, can be written as

24 .
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f n ( t ) = |P i |exp(± 10^ *„_ . ,_<*> (2.14)

if n is odd and positive, or even and negative. Otherwise, we have.

f n ( t ) = loj exp(± i92) f^C't) , (2.15)

where the sources are located at z = nL. The response to each of these

sources in the bounded region (- L/2 <. z ̂  L/2) corresponds to a

reflected wave of the original system. Just how to find these responses,

and how to reduce the model to one that is uniform in space, is discussed

below.

To evaluate the response due to the image sources, each source

can be considered separately and the results added together, which is valid

due to linearity. Since we are now only considering one source at a time,

as far as the response in the bounded region (-L/2 ^ z s L/2) is concerned,

all the regions of the reciprocal medium between the source and the

bounded region can be combined, beginning at the image source (remember

that the interfaces between the media do not produce reflections). The

procedure will then be to find the response to the image source in the

reciprocal medium up to the position where the combined reciprocal medium

ends. From this position on to the bounded region, the wave will be

treated as propagating in the regular medium.

As an example of this procedure, we shall evaluate the

response of the image source at z = -5L. The essential steps are shown

in Fig. 2.7(a-c). In part (a) the basic model is shown, while in part

(b) all the regions of the reciprocal medium between the source and the

bounded region have been combined, beginning at the image source. Next,

we find the response at the position where the reciprocal medium ends,

i.e., at z = -5L/2. We do this by assuming that all space is filled

with the reciprocal medium, and use the analysis for an infinite system

given in Section 2.1. The response is thus given by Eqs. (2.3) and (2.4).

For the source at z = -5L, the functions in the integrands of Eqs. (2.3)

and (2.4) have the form -G(k) - exp(- i5kL) and, from Eqs. (2.14) and

(2.15), f_5(u) = |p1|
3|p2|

2 exp[± i(391+282)] fQ(w). Also, G(u,k)

= [D(u),-k).]. , i.e., we have the reciprocal medium. The response

26



\

5

\
!\

*~. .-2
-5L 5L/2

(a)

-L/2 L/2

J
-5L -5L/2

( b )

f-5

J ^
-5L •5L/2

(O

Fig. 2.7 Equivalent models with respect to the response in the

bounded region (-L/2 £ z ̂  L/2) for a source at z = -5L.

Source f is given by Eq. (2.19).
"• O
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at z = -5L/2 is then

*(t,-5/2L) = •£- \ F(co,-5L/2)|p |3 |oJ2 exp i[cot±(3S +20 )]f (co)du),
£t JL o • ± &t ' ±. & (j

0 (2.16)

where the k-integration has been performed to obtain

F^,-5L/2) = ± f exp(-^i5kL/2) ^ = - i exp i5k"L/2 (2>1?)

^ If J_lr ^ ^l^'^.l^' ^ ly lj-I IkTt^. J V JVT"JV _/ Ix 1^.

The wave is now to propagate from z = -5L/2 to the bounded

region in the regular medium. This portion of the wave's propagation is

accounted for by considering the wave response of Eq. (2.16) to act like

a source for the region to the right of z = -5L/2. It is in just this

sense that the interface between the media is said to convert a k wave

to a k wave with no reflection. This source is determined by finding

a source which, when placed at z = - 5L/2, produces the same response

there as given by Eq. (2.16). This source, shown in Fig. 2.7(c), has

the value ~f = exp(i5k L/2) ~f . Again, Eqs . (2.3) and (2.4) are used
— —to find the response to the new source. We assume all space is filled

with the regular medium, so that G(to,k) = [D(u),k)] , and, with the

source at z = -5L/2, G(k) = exp(-i5kL/2) . Equation (2.4) then gives

F(u,,Z) =
k+ - k

Finally, this can be inserted in Eq. (2.3), along with the source term

f K(U)), to give the response in the bounded region.
~" O

To generalize this approach to any image source, note that

the exponential factor relating f and f simply accounts for the
~o ~o

wave initially propagating from z = -5L to z = -5L/2 as a k wave. It

is thus reasonable, and can be shown, that any source f at z = nL
n

can be replaced by a source f at z = nL/2 with
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f = exp(-inlTL/2)f , (2.19)n n v

where k~ is used for n < 0.

This gives the spatially uniform model we have sought. It

consists of an infinite train of image sources at z = nL/2, whose

values are given by f from Eq. (2.19). These sources are subject to
n

the regular medium only, so the analysis of Section 2.1 may be used to

evaluate the response to each source. The total response of the bounded

region is found by adding all of these responses together to obtain

llf(t

I \ f rr, I

P °°+10'n ~ if (l*>) + • "

,z) = —- 2 Jexp(-ik~"z)+A(z) S exp [- im (« +a )]>exp iwt dco,
2it J + -1 , 12

oo -rr ~ L J

(2.20)

where k~ is used for z < 0. The other quantities in Eq. (2.20) are

(k+ - k ) IT 9i + i in|p1| , (2.21)

(k+ - k") T 9 + i £ n | p ! , (2.22)

and

A(z) = [(1 + exp i^) exp (- ik~z) + (1 + exp iQ̂ ) exp(- ik+z) ] .

(2.23)

Equations (2.20) - (2.23) give the basic mathematical equations needed

to evaluate the response of a bounded system to a localized source at

z = 0. .

It should be emphasized that Eq. (2.20) gives the response

for any time t, just as Eq. (2.2) gives the response of an infinite

system for any time t. Thus, the finite speed of propagation of the

reflected waves is taken into account. However, it is the asymptotic

response which is most readily evaluated, and of most general interest,

so we shall concentrate on it.
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We shall consider the same two basic problems treated for the

infinite plasma. First, the response of the system is found for a source

which is an impulse in time. If this natural response eventually grows

indefinitely in time, the system is unstable, and the linear analysis has

given as much information as possible. If the response eventually decays,

we may consider the second problem, i.e., the response to a steady sinu-

soidal source switched on at t = 0.

2.2.3 Natural Response

For this case, the source is an impulse in time, i.e.,

f(t) = 6(t), so that f
n(̂ ) = 1 in Eq. (2.20). The first step in

determining the response is to evaluate the infinite series in Eq. (2.20)

as a geometric progression, which gives

oo r -i

C exp -im(a + a ) = , (2.24)
m=l L J exp i(Q +a )-l

for Im(Q: +0: ) < 0. Thus, initially the LIP must be taken low enough in
J- £t

the to-plane that the condition Im(Q +a ) < 0 is satisfied, in addition

to the requirement that the LIP be below the branch point which occurs

when k = k . This is located at to = u , and is just the branch point
s

we found for the infinite system (Section 2.1.2) when the k-integration

contour was pinched by colliding poles (k and k here).

To evaluate the asymptotic response of the system,the LIP

in Eq. (2.20) is raised upward, and, as in Section 2.1.2, deformed

around the branch points of the integrand. In doing so, the function

in Eq. (2.24) is analytically continued in order to include the region

for Im(Q! +a ) ̂  0. The response will be governed by the lowest branch

point in the co-plane. In addition to the branch point at co when
+
 s

k = k , there are also branch points of the integrand when the function

in Eq. (2.24) is singular, say at w = w . This occurs when

^ + a2 =
 2nn • (2.25)

where n is an integer.
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Now if to is the lowest branch point, Eq. (2.20) can be
s

evaluated by using Eq. (2.11). The result, as in Eq. (2.5), has the

form

exp i(u) t - k z)
i|/(t,z) « =75 — (t - ») , (2.26)

t / 2

where k = k (u) ) = k (to ) • For this case, the boundaries have no
s s s

effect on the spatial form or time dependence of the response.

If, on the other hand, the lowest branch point is at u) ,
n

Eq. (2.24) indicates that it will be, in general, a simple pole. The

response may then be written as

ilf(t,z) -* A(z) exp ico t (t -» °°) , (2.27)

where A(z) is given by Eq. (2.23). This response is due to the

constructive interference of reflected waves, and may be termed a

normal mode of the system. To see this more clearly, we rewrite Eq.

(2.25) as

(k+ - k~)L = [2mt ± (6i + 62>] -.if-lnlpj |pg| ] , (2.28)

where Eqs. (2.21) and (2.22) have been used. This equation states that

for the normal modes the phase shift around the loop must be an integral

multiple of 2it, and that the loop gain must be unity. It should be

noted that the u> 's and the spatial dependence of the corresponding
n

modes are functions of the reflection coefficients.

The normal mode frequencies, u) , are found by eliminating
n

(k - k ) between Eqs. (2.11) and (2.28), and solving for w. Hence,

the u) 's are given by solutions to
n

H(u),P1,P2,L,n) s |[2nn ± - i

- b2(io) + 4c(co) = 0 . (2.29)
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If the system is reciprocal, i.e., D(co,k) is even in k, then k = -k ,

and Eq. (2.29) reduces to

H(w,P1,P2,L)n) = j[2mt ± (S.̂)] - i In | pj | pj r L~
2 +- 4c(co) = 0.

(2.30)

Recall that, in the above analysis, P and p may be functions of to.
J- £

If such a dependence exists, it must be included in Eqs. (2.29) and

(2.30) to solve for the frequencies co . In Eqs. (2.29) and (2.30), the
n

whole range of n values (n = 0, ±1, ±2, etc.) is allowed; with the +

sign on (®,+89)» only roots with co > 0 are admitted, while with the -

sign on (9 +6 ), only roots with co < 0 are admitted. Even with this
J- £l A

limitation, Eqs. (2.29) and (2.30) may still give extraneous roots

because they were derived by squaring Eqs. (2.11) and (2.28) to remove

the sign ambiguity in Eq. (2.11). To distinguish these roots, the

dispersion relation must be solved for each admitted root of Eq. (2.29)

or Eq. (2.30) to give k and k separately, identifying them by the

prescription that k. < 0 and k. > 0 for co. < Cf • Only those roots

giving (k - k ) with the correct sign to satisfy Eq. (2.28) are proper

co roots,
n

It is possible to make some general observations about these

normal modes without solving a specific problem. For an co below the

lowest w (k real) contour, i.e., co. < cr , we have (k. - k.) < 0. How-
m i o ^- i

ever, Eq. (2.28) demands (k+ - k. ) > 0 since £n |p,||pj ^ 0, so all
i i JL £

of the co 's must be on or above the lowest uv,(k real) contour. Also,
n + O.

for |p J ^ 1, at least one of the roots k~ must, in general,
i, ̂

correspond to a spatially amplifying wave. For perfect reflections,

|p I - |p I = 1, so the spatial growth rate of the amplifying wave equals

the spatial damping rate of the attenuated wave. For a symmetric medium
+

(D(co,k) even in k), Eq. (2.28) can be satisfied by purely real k , for

perfect reflections.

In order to find the more detailed loci of the co 's as the
n

reflection coefficients are varied, consider the solutions to D(co,k) = 0

for small changes in co and k, i.e., 6 co and 6k, about some solution
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(u)1>
k
1)- These parameters are related by

6co

where v = dco/dk| is the generalized group velocity, usually
GJ, wl' l

defined for simply propagating waves when co and k are purely real.

Using Eq. (2.31), we find for the normal modes

&(k+-k~)=6o) Re (— - — ) , (2.32)
1 X ni VV VA

where 6co is the change in the growth (or damping) rate of the normal
ni

mode. From Eq. (2.28), we see that an incremental decrease in the

magnitude of the reflection coefficients gives 6(k. - k.) > 0. Thus,

the corresponding sign of 6u> depends on the sign of Re(l/v - 1/v ).
ni G G

In general, for the waves studied in Sections 4 and 5, we have

Re(l/v_+ - 1/v,, ) > 0, so the effect of decreasing |p,l|P0| is to dampG G 1 £
the normal modes.

Some of these results are illustrated in Fig. 2.8, where the

location of various branch points (co and co 's) are shown in the co-plane
s n

for a symmetric medium with Re(l/vJ~ - l/v~ ) > 0. Note that in general,
G G

for low loss reflections, it is possible to have an co lower than co ,
n s

except in the special case when co is the lowest point on the LO (k real)
s . (•*

contour. As the reflections are made more lossy, the normal mode

frequencies will migrate upward, eventually leaving co as the lowest
s

branch point. If co is in the lower half plane, the natural response
S

will eventually grow in time, due either to a normal mode at co or an
n

absolute instability at co , depending on the reflection coefficients.
S

If, on the other hand, to is in the upper half plane, but the u> (k real)
S \JL

contour still extends below the real Lo-axis (as for a convective

instability), we may find a decaying or a growing natural response,

depending on whether or not the reflections are lossy enough to move all

of the co 's into the upper half plane,
n
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It should be noted that if a medium supports two waves

which, in some parameter range, have Re(l/v - 1/v ) < 0, an
G G

incremental increase in the reflection losses will have a destabilizing

effect on the normal modes. For nearly lossless media, such a change in

the sign of Re (1/v - 1/v ) may occur when one or both of the waves
G G 55

have negative small signal energy. The destabilizing effect of loss
56

is then analogous to that found in a resistive-wall amplifier. Of

course, any such system would have to comply with the model used in

this section. However, we shall not pursue such a study here. In any

event, as mentioned earlier, all of the w 's must still be above the
n

lowest w (k real) contour.
\JC

2.2.4 Forced Response

In the last subsection, we found that if all the normal mode

frequencies, LO , and the branch point, 10 , are in the upper half co-plane,
n s

the natural response of the bounded system will eventually decay. For

this case, the forced response of the system to a localized sinusoidal

source may be considered. We again take f (t) = exp iw t for t > 0,

where to is real, as shown in Section 2.1.3. Its Laplace transform

is f (to) = [i(co-co )] . In studying the natural response, the source

was taken at z = 0 since the form of the asymptotic natural response

is not dependent on the source position, as shown in Appendix A. How-

ever, the form of the forced response is dependent on the source position,

so we use the result of Appendix A for a localized source at an

arbitrary position, z , where - L/2 <, z ^ L/2. For the sinusoidal

source, this gives the response

t(t,z) .i .
-+10 • - u . -

° (2.33)

± >
where k is used for z < z . The other quantities in Eq. (2.33) are

^ = (k+ - k~)(| + ZQ) T 61 + i tnlpj ,
 ; (2.34)

Q2 = (k
+ - k~)(| - ZQ) =F 82 + i £n|p2| , (2.35)
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and

- f - - - + 1
A(z) = -s(l + exp ia ) exp[- ik (z-z )] + (1 + exp iQ̂ ) exp[- ik (z-z )]>

(2.36)

Note from Eqs. (2.21) and (2.22) that

"l + 52 = ai + a2 ' (2-37)

so Eq. (2.24) may be used to evaluate the infinite series again. As the

LIP of Eq. (2.32) is moved upward to evaluate the asymptotic response,

the first branch point encountered is at GO = to on the real u)-axis,

due to f (10). The asymptotic response determined by this branch point

is

»( t , z ) - |exp[- ik^z-z )] + ,7™'^ i il exp iu t (t^ 0 exp n.un4ti0; - ij o

(2.38)

The first term of this response is due to the initial wave

propagating away from the source at z , while the second term is due to

the sum of the reflected waves. If u> is very close to a normal mode

frequency, co , the second term is very large and can dominate. This is
n

the usual case in exciting resonant cavities, since their normal mode

or resonant frequencies are nearly on the real w-axis due to very small

reflection losses. On the other hand, certain systems, including many

bounded plasmas, have more lossy boundaries, in which case one must use

both terms in Eq. (2.38) to determine the spatial form of the response.

In the case that the reflections become so lossy as to approximate an

infinite system, the response is given by the first term alone, as one

would also find from Eqs. (2.6) - (2.8) of Section 2.1.

2.2.5 Axial Profiles

In the last several subsections, we have been mainly concerned

with the asymptotic time response of bounded systems. However, the
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results we have obtained also contain information on the axial profile

of the asymptotic response. In this subsection, the axial profiles for

natural and forced responses are compared.

Before giving the axial profile for the natural response, it

should be mentioned that in the case that the natural response grows in .

time, the asymptotic amplitude is actually determined by the nonlinear

saturation of the waves, whereas our analysis has been linear. However,

it is often assumed, and observed experimentally, that for weakly

unstable plasmas, the nonlinear steady state is determined by the form

of the linear asymptotic response. Thus, the axial profile should be a

useful check with theory, even for many unstable systems.

Natural response profiles: There are two types of natural

responses to consider. One occurs when the lowest branch point in the

to-plane is at to , due to the colliding of poles k and k , and is
S

given by Eq. (2.28). For this case, the amplitude has the form

i i O

mz)| « exp 2 k z , (2.39)

while the phase angle of t|i, \(z), varies as

X(z) oc - k z . (2.40)
sr

This is just the form the response would take for an infinite system,

so the boundaries have no significant effect.

The second type of response occurs when a normal mode

frequency at to is the lowest branch point. The natural response is

then given by Eq. (2.27), which yields an axial profile with

'(z)| °c p I exp 2 k*z + |p I exp 2 k.z
J. 1 ^ • 1

+ k)z cos [2<2 - (k - k)z] ,

(2.41)
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[|p I exp k.z sin (0 - k z) - |p I ' exp k.z sin(0 + k z) ]
, y v J - i i * ^ » i i *
tan X( z ) <*

[|p I exp k.z cos (0 - k z) + IP I exp k.z cos(0 + k z)]

(2.42)

where 20 = nit ± (6-90)/2. This profile depends not only on the
J. £t

dispersion relation, but also on the system length and reflection

coefficients. There are some special cases for which these expressions

can be simplified.

Case 1: The dispersion function, D(w,k), is even in k.

We then have a symmetric medium, so Eq. (2.28) can be written as

±L = k+L = - k±L = \ In |pj

(2.43)

k L = k+L = - k L = [nit ± (9,+9_)/2] .
I* I" I" 1 A

This reduces Eqs. (2.41) and (2.42) to

<Kz) <* p exp 2 kiZ + p2 exp(- 2k..z) + 2 PI pg ' cos 2(0 - k

(2.44)

[|p J^exp k z - |p J^exp^ k z)]
tan y(z) = - i - - = - : - - — tan(0 - k z) . (2.45)

/ / T*

[ ( p l ' e x p k Z + | P I ' exp(- k z ) ]

Since k and k. are determined when p , o , L, and n are specified,
r i J_ £

the mode pattern is now determined purely by the system length and

terminations, and is independent of the form of the infinite dispersion

relation.

Case 2: In addition to D(u),k) being even in k, the

terminations are identical. This means Ip I = |p | = |p| and 9 =9
X ^ J. £t

= 9 , so that 0 = nit/2. Equations (2.44) and (2.45) thus become

|^(z) | <x [cosh 2 k.z + cos(nn - 2k z) ]

oc cosh [2(^n |p | )z /L] + cos [2(nn ± 9) Z/L - nit] , (2.46)
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tan X(z) ̂  tanh k z tan (— - k z)
i £ r

°= - tanh k.z tan [(nit ±6) z/L - nit/2] . (2.47)

Case 3: In addition to the conditions for Cases 1 and 2, the

terminations are lossless. Thus, |P | = |p | = 1, or k. = 0, so Eqs.
J. £t i

(2.46) and (2.47) reduce to

|l|>(z)|2 oc cos2[(njt ± 9)z/L - nn/2] , (2.48)

X(z) - 0 . (2.49)

In this case, the mode patterns are pure standing waves with cosine or

sine forms about the center for n even or odd, respectively.

Forced response profiles; If a system's natural response

eventually decays, we may consider the form of the forced response as

given by Eq. (2.38) for a localized sinusoidal source. The axial profile

is made up of a combination of the initial wave from the source, and the

sum of its reflections from the boundaries. This profile has the

amplitude and phase given by

|f(z)|2 oc exp 2k±z + |p I2 exp(k+ - kT)L exp 2 k.z
i ^, i. 11 i

+ 2 p exp(k - k ) — exp(k. + k. )z cos [2 (3 ,-(k - k )zl ,
2,1 i i 2 11 L 2,1 r r

(2.50)

exp k7z sin(B T k~z)- |p |exp(k.-k.fe exp k.z sin(P ±k z)
1 £l ) \. f d y JL 11^ 1 £t j-L I*tan X(z) °c ±
± _ ± i I + - L T

exp k.z cos(pri ,T k z)+l p_ , exp(k.-k. )— exp k.s
m 1 9 1 T * ' V l T T 9 1i ^ , o . r z,± iiz i

(2.51)

where the upper superscripts and left subscripts are used for z > z ,

and vice versa for z < z . The new constants in these equations are

2P2 = (kr - V \ T 62, 2P1 = - (k^ - k;> f ± 61 . (2.52)
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If |p I = |p I = 0, the system acts as if it were infinite,
.L ^ - '

and we simply have the profile of a k wave propagating to the right of

the source, and a k wave to the left. On the other hand, if to

(the source frequency) is very close to a normal mode frequency, u , we
n

may use the additional condition '. -

(k+-k~)L« [2mt ± (8-+9 0 ) ] - i[tn|p | |p I] , (2.53)
i £ J. £ • . -

as in Eq. (2.28). Then Eqs. (2.50) and (2.51) can be reduced to Eqs.

(2.41) and (2.42) to give the normal mode profile.

2.2.6 Extension to D(co,k) of Higher Order in k

Up to this point, we have assumed D(u),k) to be quadratic

in k. When the dispersion relation is of order P > 2 in k, the

various roots k(co) can all be identified, for to. - * - < » , as waves

excited on the + or - sides of an excitation point. Often f3 will
+

be even, and there will be pairs of roots kn(w) corresponding to waves
P , .

excited on either side for each wave type. For instance, for a two

component plasma treated by the first two moment equations, we have

P = 4; there is a pair of pressure waves associated primarily with the

electrons (Langmuir waves), and another pair associated primarily with

the ions (ion-acoustic waves). We then need to define a set of

reflection coefficients, p » P . > P , and p , for each termination,
ee 11 ie. ei

to account for the fact that upon reflection a wave of a given type can

excite not only the same type, but also the other type. In principle,

one could model this situation by again using a series of image sources

to represent the reflections. In practice, however, this procedure is

hardly tractable.

Many cases of practical interest correspond to the situation

where one pair of waves is dominant, and the others are strongly

attenuated and excited only very locally to the terminations. Over most

of the system, only the dominant waves have appreciable amplitude, and

may be amplifying or only weakly attenuated. The situation is analogous
57

to that in ordinary electromagnetic waveguides used in a frequency

range where only the lowest transverse eigenmode propagates freely.
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Evanescent higher order transverse eigenmodes are excited locally to the

termination, and the impedance or reflection coefficient for the

dominant mode is measured at a point sufficiently far from the

termination that the evanescent modes are negligible. The locally

excited higher order modes, which are necessary to satisfy the boundary

conditions in a full treatment of the problem via Maxwell's equations,

contribute to the reflection coefficient for the dominant waves.

In the present case, we can combine the effects of the

evanescent modes with those of surface waves, if any, into the reflection

coefficient of the dominant wave. The theory of the previous section is

then applicable as far as Eq. (2.28), which determines (k - k ) for

the dominant waves. The only problem that arises is to solve the

dispersion relation for the normal mode frequencies, w , for the allowed
n

(k - k ) values. It is clear that the problem is determined, but it is

difficult to give a general method when (3 > 2. In practice, however,

there should be no difficulty in solving particular problems either

graphically or numerically.

The reflection coefficients can be determined most simply by

measurements. In Section 2.2.5, we have given the axial wave profile for

both the normal modes and an externally driven system. Since these are

functions of the reflection coefficients, careful measurements of the axial

profile would allow one to determine the reflection coefficient values.

For cases where measurements are not available, the reflection coefficients

must be determined from physical considerations. A combination of these

approaches is used in Section 4. There we illustrate how varying the

reflection coefficients effects the normal mode growth rate and axial

profile for drift waves.
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3. WAVES PROPAGATING PERPENDICULAR TO THE MAGNETIC FIELD

In this section, we begin the study of low-frequency instabilities

by investigating waves which propagate perpendicular to a uniform

magnetic field in an inhomogeneous plasma column. These waves can be

driven unstable by Hall drifts, i.e., E „ X B drifts, of the electrons~u ~
and ions due to a radial electric field. The instabilities belong to a

30
general class of flute-type instabilities which arise when electrons

and ions drift at different speeds. For the analysis of the column, we

use cylindrical geometry rather than rectangular slab geometry. There

are two reasons for this: first, the centrifugal force on the ions,

which arises in cylindrical geometry, can cause instability; second, we

pay particular attention to the lower order azimuthal modes, which are

not, in general, localized at some radial position in the column.

Consequently, the waves are described by a differential equation, which

is derived in Section 3.1. Solutions to this equation, as specified by

the boundary conditions for .the column, determine the wave characteristics.

For the case of uniform rotation of the column, the electric field

must be a linear function of radius. The instability which arises is

usually called a centrifugal flute mode, and has been studied, for
31 33

example, by Rosenbluth et^ al., and by Chen. We treat this case in

Section 3.2, and determine the effect of the column being radially

bounded. If the electric field is other than a linear function of

radius, the column rotation is nonuniform, i.e., there is shear in the

angular rotation velocity. We consider the effect of this shear in

Section 3.3, and illustrate how, for abrupt shear, the instability
*37 *̂ 8

resembles a Kelvin-Helmholtz instability. ' In Section 3.4, we

proceed to identify some instabilities in a hollow cathode arc discharge

as being of the type discussed here.

3.1 Basic Theory

3.1.1 Steady State Plasma

The model we use is an infinitely long cylindrical plasma

column immersed in a uniform axial magnetic field. The plasma is taken

to be fully ionized with singly charged ions. The model is shown in

42



Fig. 3.1 together with the cylindrical coordinate system used. We

assume an arbitrary form for the DC radial electric field, a Gaussian

radial number density profile, and no axial variations. The number

density thus has the form

n(r) = N exp(-r2/i-o) . (3.1)

One can extend this model to consider other number density profiles.

However, it is most often the electric field profile which can take on

various shapes in plasma discharges, while many of the number density

profiles can be approximated by Gaussian curves. Thus, we consider this

case in detail.

The equations used to describe this fully ionized plasma are
58

two-species moment equations given by Braginskii. For the plasma to

be accurately described by these equations, the particles of the plasma

must be sufficiently localized, so that the plasma acts nearly like a

fluid, the small variation from this state being accounted for by transport

effects included in the theory. For particle motion across the magnetic

field, this localization is provided by the magnetic field, and requires

the Larmor radii of the particles to be small compared to the zero and

first order scale lengths of the physical quantities (density, electric

field, etc.). For particle motion along the magnetic field, the

localization must be provided by particle collisions, and requires the

mean- free-path to be small compared to the scale lengths of the physical

quantities. This latter condition will be of more concern in Section 4,

when we consider waves propagating at an angle to the magnetic field, so

that axial variations are important; in this chapter, the equations

describe only variations perpendicular to the magnetic field.

For the ions, we use the continuity equation

and the momentum transfer equation with the isothermal assumption

dv.
nm — ~ = - T. Vn- V • T. +en(E + v. X B ) . (3.3)i dt i j_ j_ ~ij. ~ ~ij_ ~
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(a)

(-r2/
<n

exp(-rvr0
fc)

r/rf

Fig. 3.1 (a) Model of the cylindrical plasma column immersed

in a magnetic field B , showing the coordinate system.

(b) Radial.profiles of number density and electric field in

the column.
44



Here, n is the number density for both ions and electrons, m. is the

ion mass, v. is the ion macroscopic velocity, T. is the ion temperature

in energy units, JT. is the traceless viscosity tensor, -e is the charge

of an electron, E is the electric field, and B is the magnetic field.

MKS units are implied throughout. We assume that o> . »v.., where

w is the ion cyclotron frequency and V.. is the ion-ion collision
ci 11

frequency. Thus, ion-ion collisions are neglected, and the collisionless

viscosity tensor is used in order to account for finite ion Larmor radius
41

effects, as discussed by Chen. The form of this viscosity tensor in
33

cylindrical coordinates is

'W W a
rr r9

Y. ' J= I I • (3-4)

' «

where the tensor components are

3(v.e/r) 1 Bv..
ir

2 r

i f 5(vir/r)

W r 6 = W 8 r = 2 r ~ TT"

Finally, in the analysis to follow, care must be taken to properly

differentiate the unit vectors for cylindrical geometry, 1 and i. .
~r ~0

Their nonzero derivatives are

"ae = lv "ae =" l
r ' (3-6)

We begin by solving Eq. (3.3) for the zero order ion velocity.

First, it is assumed that the inertia and viscosity terms are small

compared to the other terms in Eq. (3.3), which gives the solution

Z* , n « - 1 — — + — 1 _ifl = v^ 1* (3-7)
^ eB B
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This approximation is then used to find the correction due to inertia

and viscosity. The result is

rco
ci

(3.8)

where p. | = (T, /m, ) ' /co , | is the ion gyroradius (or Larmor radius),

and the prime denotes differentiation with respect to r. The first

correction term is due to inertia, and represents the centrifugal force.

This always acts radially outward, so it aids or opposes the force of

the radial electric field, depending on the latter's direction. For this

correction to be small, the rotation frequency (= v /r) must be much

less than w .. Solutions to Eq. (3.3) for larger rotation frequencies
ci

are discussed in Appendix B. The remaining correction terms in Eq. (3.8)

arise from ion viscosity, i.e., from the effect of the finite ion Larmor

radius. These terms are nonzero when there is rotational shear due to

an electric field which is other than a linear function of radius, since

from Eq. (3.7)

0
(3.9)

This correction is small if the scale length of the rotational shear,

(3.10)
(v0/r)

<v0/r)' '

is large compared to the ion gyroradius in the sense that

Pi*r
« 1 (3.11)

and if the rate of change of shear, (v /r)', is not too large over a

gyroradius.

The equations and analysis for the electrons are somewhat

simpler due to their smaller mass. We neglect both electron inertia and
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finite Larmor radius effects, since these terms appear in the momentum

transfer equation multiplied by the mass, as seen from Eqs. (3.3) and

(3.4). The continuity equation for the electrons is unaffected by this,

being

5T+V, - ( n v ) = 0 , (3.12)
O t •*- '""'SJ-

while the momentum transfer equation becomes

0 = - T V.n - en(E + v X B) , (3.13)
e -i- ^ ^ —

where the symbols are analogous to those for the ions. We have also

made the isothermal assumption for the electrons since, as is proved in

Appendix C, not making this assumption results in exactly the same first

order wave equation as we derive in Section 3.1.2. Equation (3.13) can

be solved to yield the zero order electron velocity

0.14)

We thus have a steady state in which the electron fluid

rotates about the axis at a velocity given by Eq. (3.14), while the ion

fluid rotates at the velocity given by Eq. (3.8). It should be noted

that each drift is made up of a diamagnetic drift term and an K, * B

drift term; these are the first and second terms, respectively, in

Eqs. (3.7) and (3.14). But only the ,E X B drift represents a true

particle drift; the diamagnetic term describes momentum transport due to

a density gradient for particles gyrating about a fixed point. As we

shall see in Section 3.2.1, the diamagnetic drift cannot produce

instability, while the !E X B drift can. In the next section, the

perturbation analysis of the equations describing the plasma column is

considered in order to determine the stability of this configuration.
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3.1.2 Perturbed Plasma

To perform a linear perturbation analysis on the equations

describing the plasma, i.e., Eqs . (3.2), (3.3), (3.12), and (3.13), we

assume that the variables n, v. , v , and E all have the general form
Ŵ j_ f̂ Q̂ i~\j

n(r) = n (r) + n (r) exp i (cot-m9) , (3.15)

where the subscripts 0 and 1 stand for zero order and first order

quantities, respectively, with n «n . Also, co is the wave frequency

of the perturbation, which is equivalent to Fourier or Laplace

transforming in time (see Section 2), and m is the azimuthal mode

number, which is a positive or negative integer or zero. No axial

variation is assumed since we are considering perturbations or waves

which only propagate, or have spatial variations, perpendicular to the

magnetic field. Before perturbing the equations, it is useful to make

some further assumptions about the waves. We take P « 1, where
O

(3 [= nT/(B /2M> ) in MKS units] is the ratio of the particle pressure to

magnetic field pressure. We thus neglect perturbations in the magnetic

field, and assume that the waves are quasistatic, i.e., E = - ĵ_$, > where

0 is the first order potential. In defining the number density,. n,

following Eq. (3.3), it was implied that the ion and electron densities

are equal, even to first order. This is known as the quasineutrality

assumption, and is valid for frequencies, co, much less than the ion

plasma frequency, co . . In addition, we take co « co ., and, since
pi ci

co . < co . for most plasmas of interest, this condition implies that

quasineutrality is well satisfied.

We begin by perturbing the electron equations. The first

order electron velocity comes directly from the momentum transfer

equation, Eq. (3.13), and is

v
~e-Ll eB r ~r -i

where ? = (n /n - &b_/T! ). If this relation is substituted in the
10 1 e

first order continuity equation, Eq. (3.12), we obtain
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(3.17)

which can also be written as

e0, co-m UT

T - _.. ' ,' _' ', (3-18)

Q

Here -u> . [= -(2m/r )(T./eB)J is tne ion diamagnetic frequency, which

is not a function of radius since the density profile is Gaussian, and

to [= -E /rB] is the rotation frequency due to the electric field. Note
E 0
that Eq. (3.18) is independent of the electron temperature, so the waves

themselves are not affected by the electron temperature. The physical

reason for this is that the electron temperature only enters the

equations via the pressure term, nT , of the momentum transfer equation.
e

This term gives rise to a diamagnetic drift velocity, which describes

momentum transport, but not true particle drift. When the electron

velocity is substituted in the continuity equation, this term cancels

out since it does not describe particle transport. In Appendix C, we

prove that the electron temperature cancels out of the continuity

equation to all orders, and also that, despite this, there may be electron

temperature fluctuations associated with the waves. It should be

emphasized that this cancellation does not occur if axial variation is

considered, as for the waves studied in Section 4; nor does it occur for

the ions, since we include ion inertia and viscosity. Another simplifica-

tion arises in that Eq. (3.18) contains no derivatives, and thus gives

the relationship between the potential perturbation and the density

perturbation directly, once the frequency w is known. The calculation

of this frequency is, of course, one of our objectives. To obtain a

second relation between n and 0 , we consider the ion equations.

As for the zero order ion velocity, the first order ion

velocity is solved by iteration of Eq. (3.3). We use the zero order

momentum transfer equation, multiplied by n /n , to simplify the first

order equation, which amounts to using the equality
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nlTi
co .ci

Vi
n.

Ti
0

(3.19)
0 ci 0

This leads to.the first order ion momentum transfer equation

raino
'9viJ-1

t ill

T.i
0)
ci

T. — X B) . (3.20)

As a first approximation, we neglect the terms on the left-hand side of

Eq. (3.20) as small, and find

rp

im
(3.21)

where

(3.22)

Using this approximation to find the corrections due to the inertia and

viscosity terms, i.e., the left-hand side of Eq. (3.20), yields

v.
Ul eB ci

(3.23)

Here A1 is due to ion inertia, A0 is due to zero order viscosity,
-̂•X ^̂ A-t

and A is due to first order viscosity. These are given by

( mv^\ / v \
u,--2VY' +^K +-2TJ r\° r

~• 0 / m2 — y + -
r r
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T •10
eB

ira
2r

2r

m

rr
0' J

(3.24)

2
ro 2r

To eliminate the ion velocity variable, we insert Eq. (3.23) into the

continuity equation, i.e., Eq. (3.2). In doing so, Eq. (3.18) is used

to express n,/nn
 in terms of Yi as defined in Eq. (3.22). This leads

to a second order differential equation in Y, which is less lengthy

than one might expect from Eq. (3.23), as a large number of terras cancel

out, including the third order derivatives of Y- The equation is

- ra
2VE

U1U2

U), rco.

2to mw u> BI E 1
+ \ +

nito
1/1

2

°2

Y = 0 (3.25)

co = w - mw + mco .
2 E Di

For the case of uniform
oo

where u>. = u> - mio and
1 E

rotation, co = 0, and this equation reduces to that derived by Chen,'
59

and by Chu et al., who used the moment equations, while Rosenbluth et
31

al. have derived an equivalent equation from kinetic theory. Equation

(3.25) takes on a shorter form, and contains only first derivatives of

a) , if we transform the variable Y to ¥, where

51



rto B eB rto
(3.26)

We then have the differential equation

n , 2 1 9 2m -1 2 co

2 ' • 2
L r r

0 V2J
V r>I _ U

(3.27)

This agrees with the equation for nonuniform rotation derived by
36

Rosentaluth and Simon, when the density profile is assumed Gaussian as

in our model. They used a special set of moment equations obtained

directly from kinetic theory, while we have derived the equation using
58

the more conventional moment equations.

Now that we have the basic differential equation for the

waves, the problem becomes one of solving it for the eigenfrequencies,

w, and the eigenfunctions, f, and thus n and 0 by Eqs. (3.18) and

(3.26). A symmetry property of Eq. (3.27) which is useful to note is

that if a given set of parameters yields an eigenfrequency to and an

eigenf unction ¥, then by changing to to (CO_.-UL), we obtain the
E DI E

eigenfrequency -to for the eigenfunction T, where the * denotes the

complex conjugate. This can be proved by making the substitution of

to -»(to -to ) in Eq. (3.27), and then taking the complex conjugate of the
.hi Di jbi
equation. The asymmetry of the transformation with respect to the

approximate total ion rotation frequency, (w -w .), can be traced back

to the Coriolis force which arises from the first order inertia term in

cylindrical geometry, as discussed by Chen.
33

Note also that there are

complex conjugate solutions to the equation, i.e., if oj is an eigen-
*

frequency for the eigenfunction Y, then to is an eigenfrequency for

the eigenf unction Y . We have assumed an exp itot time dependence, so

the waves are unstable for w. < 0, where w. = Im(u)) . Thus, since both
* 1 . 1

to and to are solutions, there is stability only if to is real.
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Before we can find explicit solutions to Eq. (3.27), two

boundary conditions must be specified. Since the equation has a regular

singularity at the origin, we use the nonsingular solution, and thus need

only the boundary condition at the outer radial boundary, say at r = r .

When r is not infinite, we take this to be 0 (r ) = 0. This can be
b X b

justified on physical grounds when the plasma column is enclosed by a

conducting cylinder, or when a conducting ring of radius r is placed
b 60

at one end of the column, e.g., an aperture limiter in a Q-machine,

since the conductivity of the plasma along the magnetic field is much

larger than across the field. By Eq. (3.18), <i (r ) = 0 also demands

n (r, ) = 0, while Eq. (3.26) gives the boundary condition in the
1 b
variable ¥, i.e., Y(r. ) = 0. For the case r = °°, the boundary

b b
condition is more involved, and is discussed in the next subsection.

We now consider the behavior of these waves by solving Eq.

(3.27) for uniform rotation, for which analytic solutions are obtained,

and then for the more general case of nonuniform rotation, for which

the equation must be solved numerically.

3 .2 Waves for Uniform Rotation

3.2.1 Solutions for Radially Unbounded Columns

For uniform rotation, o> = constant, which implies that the
E

electric field, E_, is a linear function of radius. For this case, it

is convenient to transform Eq. (3.27) by the following change of

• vo 31
variables:

Y(r) = e x p M ( X ) . (3.28)

61
We then obtain Whittaker's equation

= 0 , (3.29)
dX" [_ "* A 4&" J

where
2

h = 1 - -^ , (3.30)
2uJlW2

and •L - m/2. The nonsingular solution to this equation can be written as
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.. = X exp(- ) M(£ - h + , 1 + 2£,X) , (3.31)
h,-c/. 2 • ^

where M(£ - h + 1/2, 1 + 2£,X) is the confluent hypergeometric function

known as Kummer's function.

In previous studies of these waves, the normal modes are

defined as those for which M. » (X) decreases like exp(-X/2) as
O T O O O C C Q >

X -» ro •
3J-»J-3'-3D>J:' It should be noted fromEqs. (3.26) and (3.28) that

0 does not decrease as r -» » for this case, but rather is a constant

or increases as some power of r. However, we shall see in Section

3.2.2 that these modes indeed give the asymptotic behavior of the normal

modes of a bounded column as r, -» °°. The form of 0, for r -» <»
b 1 b

results from the model being of an unbounded, uniformly rotating plasma
59

column, as discussed by Chu et al. We thus proceed to investigate

these normal modes. For M, . (X) to decay exponentially at large
h,^

values of X, the power series representing Kummer's function must be

terminated after a finite number of terms, as determined by the radial
33

mode number. This condition can be written as

h = I + q + \ , (3.32)

where q = 0,1,2, ... is the radial mode number. Using the definition

for £(= m/2), Eq. (3.32) can be put in a more standard form if we let

h = 2p - 1, in which case we obtain the condition

p = m + 2q . (3.33)

The set (m,q) denotes the azimuthal and radial mode numbers for a specific

mode, which now directly specify p. The equation for the eigenf requency

thus becomes

2
p = 1 --•-£— , (3.34)

which yields the solutions
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1 ± i
(coE-coD./2)(p-l)

• (3.35)

The symmetry of the solutions discussed in Section 3.1.2 is

apparent. The transformation to ~*(to.-to ) leads to an eigenfrequency
E Di E

having the same growth rate, but the negative of the real frequency, to ,

of the original mode. The negative real frequency is interpreted

physically as a mode whose phase velocity is in the opposite direction

to the positive frequency mode. Equivalently, we may assume to to

always be positive and the azimuthal mode number, m, to take on the

negative sign. The magnitude of to is determined by the factor

m(w-to/2), and, for large electric fields, is determined by the
E Di

E,_ X B rotation, i.e., to.
'̂ u *"*"* £

For the (1,0) mode, we have p = 1, which gives the solution

to = 0; that is, this mode is always stable. For all other modes, the

waves are unstable if the radicand in Eq. (3.35) is positive, which

requires

10 1 •§•

> f- • (3.36)

Since p > 1 for these modes, the rotation due to the electric field

must be sufficiently large to overcome finite Larmor radius stabilization,

as manifested by the right-hand side of Eq. (3.36). Thus, as p

increases for the higher order azimuthal and radial modes, increasingly

large electric fields are required for instability.

The basic mechanism which drives these waves unstable is the

charge separation caused by the difference in the ion and electron

E., X B drifts due to ion inertia. This is explained from a particle
~° ~ . 30
orbit point of view by Rosenbluth and Longmire, who use a gravity term

in rectangular geometry, which simulates inertial effects of a rotating

plasma or curvature of magnetic field lines. The inertial effect appears

in Eq. (3.8) for the ion velocity as the correction term v
n/

rw .•• This

term can be traced through to the final differential equation, i.e.,

Eq. (3.25) or Eq. (3.27). However, it is identified most easily in
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2 / 2 2
Eq. (3.25), since v /r = (u> -u ) , and this term is seen to be the

\) £j Di
last term in Eq. (3.25) when .u''= u>" = 0. If we neglect this term,

E E
the eigenfrequencies become

(wDi'2Vto = mu)_ + m 1 , • (3.37)
E p

which are always real. As p becomes large for higher order modes,

these waves correspond to perturbations being convected around the

column at the E- X B velocity. Clearly, the inertial effect of the
~O ~

ions is needed for instability.

The waves also need a density gradient for instability.

This may be shown by letting r -• °°, so that the density becomes

uniform. Initially, we assume that the waves go to zero at a large,

but finite radius, such that r « r . The condition now put on the

constant p for Rummer's function to go to zero at r for the first
33

radial mode is

p = (l+m)(| + ~) , (3.38)
2 Xb

where X, = (r /r ) . Thus, as r -» oo, we have 1/X -• oo and p ~» °°,
b b 0 0 b

which is also true for higher order radial modes. From Eq. (3.35), we

find that in this limit

w = m(to ± w ) , (3.39)
E Di

and all the modes are stable. It should be emphasized that r, is
b

considered to be very large, and that X -» <» only because we take
b

r. -» oo faster than r -» oo. The different behavior of p seen in
0 b

Eqs. (3.33) and (3.38) will become clear in the next subsection.

3.2.2 Solutions for Radially Bounded Columns

We now consider in more detail the solutions to Eq. (3.29)

and the eigenfrequencies given by Eq. (3.35). In particular, we shall

use the more realistic model of a radially bounded plasma column. For
62

rectangular geometry, Lehhert has found that the presence of a .

boundary can have a stabilizing effect on this type of instability. In
63

addition, for cylindrical geometry, Chen has shown from numerical
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solutions to Eq. (3.29) for the special case of r = /2 r that the

eigenfrequencies obtained can be quite different from those found for

an unbounded column. Most dramatic is the fact that the (1,0) mode can

be unstable for a boundary at this finite radial position. We

consider a more systematic approach to this problem in cylindrical

geometry by extending the analytic determination of the eigenfrequencies

to the case of a bounded column. The behavior of the numerical solutions

obtained by Chen then becomes clear, and the results are generalized to

include the effect of a boundary at any radial position.

The approach is to find the zeroes of Rummer's function for

finite radial boundaries, and relate these to the parameter appearing in
64

Eq. (3.35). Curves of these functions are available, and by writing

the solution [Eq. (3.31)] in the form M[(m-p)/2, 1+m, X], we may find

the precise value of p as a function of the position of the outer
/ 2

radial boundary, measured by X [= (rh/
r
n) ]• We have done this for the

two lowest order radial and azimuthal modes, and compared the results

with the asymptotic value of p given by Eq. (3.33). The results are

shown in Fig. 3.2. The curves approach the asymptotic values of p at

large X, , but for moderate values of X, they can be quite different,
b b

For example, as X. becomes less than ~ 2-3, p increases quite rapidly

approaching the form given by Eq. (3.38) for the (m,0) modes when

X « 1. The actual value of p for any mode is always larger than the

asymptotic value; in particular, p > 1 for the (1,0) mode. Equation

(3.35) thus gives the result that the (1,0) mode can be unstable for a
63

finite radial boundary, as found numerically by Chen for X =2. In
b

general, the eigenfrequencies for various radial positions of the

boundary can now be found by using Fig. 3.2 in conjunction with Eq. (3.35)

In using these results, it should be noted that the position

of the boundary also determines which mode will have the highest growth

rate for a given electric field. By differentiating the expression for

growth rate [Eq. (3.35)] with respect to p, we find the maximum growth

rate of a mode occurs for
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p = - (3.40)

where the second terra in the denominator must be larger than p for

instability, by Eq. (3.36). Thus, the maximum growth rate is obtained

for 1 < p < 2. The only mode which can satisfy this condition is the

(1,0) mode, as seen from Fig. 3.2. By substituting Eq. (3.40) in Eq.

(3.35), we find that the maximum growth rate for this mode is

,, 4n(3.41)

These equations also give that |-co.| = | co | at maximum growth, which

indicates that this is a large growth rate. Thus, the (1,0) mode

changes from being stable for an unbounded column to having a possible

growth rate given by Eq. (3.41) for a bounded column. The behavior of

the eigenf requency for other positions of the radial boundary is

illustrated in Fig. 3. 3 (a). Here the real frequency and the growth rate

of the (1,0) mode are plotted for co_ = 1.5 to as X is varied. It
£ . Dl O

is convenient for this and following figures to normalize all

frequencies to to . . These normalized frequencies are denoted by W's,

with the appropriate subscript. The maximum growth rate as given by

Eq. (3.41) is thus -W. = 0.375. We also see that the real frequency

rises rapidly for decreasing X, ; it increases nearly four times as the
b

boundary radius is reduced from X = 6(r = 2.45r ) to X. = 4(r - = 2.0r_)
b b 0 b 0 0

Both W and -W. tend to zero, the unbounded column solutions, for

large X , although -W. decreases more slowly than W .

None of the other modes can satisfy Eq. (3.40) for the

maximum growth rate because their p's are too large. Thus, since p

increases for bounded columns over its value for an unbounded column,

the effect of the boundary is stabilizing. This is in basic agreement
62

with the stabilization found by Lehnert for rectangular geometry, when
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a boundary is introduced. The stabilization for cylindrical geometry

is illustrated in Fig. 3.3(b) for the (2,0) mode with W = 1.5 again
ti

[note the scale change from Fig. 3.3(a)]. The frequency begins near its

unbounded column value of W = 1.00 - iO.707 at large X . As the

boundary radius decreases, the real frequency W increases, and the

growth rate -W. decreases, finally going to zero at X = 3. Thus,

the (1,0) mode can be more unstable than the (2,0) mode, and all other

modes, say at X = 3, due to the fact that it is the first mode to go

unstable as X is increased. This can be verified from Eq. (3.36),
b

and the fact that the (1,0) mode has the lowest p values (see Fig. 3.2).

On the other hand, for larger X, , say X, - 4, the (2,0) mode is more
b b

unstable. Thus, in general, one must solve Eq. (3.35) to determine the

relative growth rates of the various modes.

Finally, we illustrate the effect of varying the magnitude of

the rotation frequency, W , due to the electric field for the (1,0) and
E

(2,0) modes. The radial boundary is taken at X, = 4, which corresponds
b

to the number density at the boundary being 2% of the number density on

the axis. From Fig. 3.2, we have p = 1.5 for the (1,0) mode, and

p = 3.1 for the (2,0) mode. These values of p are used in Eq. (3.35)

for the eigenfrequencies. The loci these eigenfrequencies trace in the

W-plane as W is varied are shown in Fig. 3.4, where the complex
E

conjugate solutions are omitted. Again the symmetry of the eigen-

frequencies with respect to the transformation W -» (1-W ) [or
E E

co -» (co - co ) ] is clearly evident. The stabilization of the modes due
E D E
to finite ion Larmor radius effects occurs for small values of |w I

E
not satisfying Eq. (3.36); values of W for marginal stability are

E
shown on the W -axis. The (1,0) mode is more unstable than the (2,0)

r
mode for small values of |w|, since it goes unstable first as |W |

E E
is increased. However, for larger values of |W I, the (2,0) mode

E
becomes more unstable. This behavior is similar to that found above as

the boundary position parameter, X , is increased (see Fig. 3.3).

We have stressed the characteristics of the lower order

modes, (1,0) and (2,0), primarily because they are most affected by the

column being bounded. We see from Eq. (3.35) that the real frequencies

are not strongly affected for p » 1, which applies for the higher order
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modes. Also, it is the growth rate of the (1,0) mode which is most drama-

tically affected by the boundary, and this mode is first to go unstable as

|w | is increased. Since the value of W required for marginal
E E 1

stability, as given by Eq. (3.36), depends on p , the results for the

(2,0) mode, along with Eq. (3.33), should allow one to estimate the

marginal stability point for higher order modes quite well.

Having considered the behavior of the instabilities for a

uniformly rotating plasma column, we now consider the case when the

rotation is nonuniform.

3.3 Waves for Nonuniform Rotation

3.3.1 Numerical Procedure

We may still use the basic differential equation derived in

Section 3.1.2, i.e., Eq. (3.27); however, since w is no longer

constant for nonuniform rotation, the equation must be solved numerically.

The fact that we already have analytic solutions for uniform rotation

with finite boundaries is helpful here, since we may check the validity

of our numerical procedure by solving this special case first.

To solve Eq. (3.27) numerically, we have modified a

predictor-corrector computer program for solving differential equations

to allow complex eigenfunctions. Since the equation is linear and of

second order, the procedure consists of solving a set of two linear first

order differential equations of the form

y'(r) = -

= y(r) (3.42)

I n '- 2m w_

2
m -1
2 +~2

0

- mu> mw . /2 )
y(r)

(3.43)

which are equivalent to Eq. (3.27).

We know that Eq. (3.27) has a regular singularity at the

origin, so care must be taken to eliminate the singular solution from
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our procedure, i.e., to satisfy the boundary condition at the origin.

To do this, we find the form of the nonsingular solution near the origin
65

by expanding the equation about this point by the method of Frobenius.

The solution is assumed to have the form

CO

Y(r) = S a rn+j , (3.44)
n=0 n

where j is to be determined. This solution is used in Eq. (3.27), and

coefficients of like powers of r are grouped together. We find that

in order to satisfy this equation, j must take on one of the two values

j = -1 ± m .. . (3.45)

For m ̂  1 the minus sign corresponds to the singular solution, so

the nonsingular solution has the form

Y(r) « aQ r"
1'1 (3.46)

near the origin. Thus, we begin the numerical integration of Eqs. (3.42)

and (3.43) very close to the origin, specifying the initial conditions

in the ratio required by Eq. (3.46), i.e.,

Y(r)

The full procedure, then, is to choose an eigenf requency , LJ,

and integrate the differential equation outward. We also integrate the

equation inward from the outer boundary, assuming Y(r ) = 0 and any

finite value of Y (rh)
 as starting values. The values of Y'/̂

obtained from each integration are compared at some intermediate position.

If they agree, we have chosen a proper eigenf requency , and also have

computed the eigenf unction. If they do not agree, we must choose

another eigenf requency . An interpolation procedure is then used to

converge to a proper eigenf requency .
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3.3.2 Solutions for Gradual Shear

The first case we consider is a gradual shear in the

rotation frequency, W , due to the electric field. We take the form
E

WE =
(3.48)

where s assumes various values. This is shown in Fig. 3.5, where the

radial boundary is taken at X = 4. This form for the profile of W
b E

is used to illustrate the effect of deviations from uniform rotation as

might be encountered in experimental devices. For s = 0, we have

uniform rotation, so that the electric field is a linear function of

radius. As s becomes negative, the electric field becomes larger

close to the origin, but decreases toward the outer boundary, r , and
b

becomes negative there for large -s. It is this case which has the

most dramatic effect on the eigenfrequencies, so we study it in detail.

Again we stress the similarities and differences of the charcteristics

of the lowest order (1,0) mode and the higher order modes as illustrated

by the (2,0) mode.

UJ

= -3.0

r/r,

Fig. 3.5 Rotation frequency profile, W , due to the electric
E
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In Figs. 3.6 and 3.7, we show the loci of the eigenfrequencies

in the W-plane for these two modes as s is varied, and compare them to the

loci for uniform rotation,when W takes on various constant values (see
E

Fig. 3.4 for reference). The response of the two modes to the non-

uniform rotation is quite different. The (1,0) mode (Fig. 3.6) has .;

eigenfrequencies which change very rapidly as s becomes negative;

the real part of the frequency becomes negative, corresponding to an

m = -1 mode, when only a small outer region of the column has a negative

W . In this connection, it should be noted from Eq. (3.7) that the total
E
ion rotation frequency is ~- (W -!)• There is a region between s KH -1.7

E
and s s» -2.1 for which the eigenfrequency appears to become real,

corresponding to stabilization. However, one is then faced with a

second singularity in Eq. (3.27) at the position where w (= ui-mw +mu) )
£ • E D

becomes zero, and possibly a third where u) (= co-mio ) becomes zero.
1 E

Numerically, we could not find solutions between s « -1.7 and

s & -2.1, either on the real W-axis, or off it. Physically, we can

argue that either the. solutions are nonexistent in this region, i.e.,

there are no nonsingular eigenfunctions, or that the waves are stable

(W real), and the singularities of the equation prevented us from

finding numerical solutions. The stability of the plasma is not

affected in either case. Another possibility is that the solutions

continue into the upper half W-plane. This is not likely for two

reasons: first, there should then be no singularities making numerical

solutions unattainable; second, there are complex conjugate solutions,

which would mean the plasma column is actually unstable between s sa -1.7

and s fa -2.1. This is not a very reasonable result in view of the

finite Larmor radius stabilization for uniform rotation. For s > 0,

the results are less interesting, as the main effect is to increase the

growth rate and real frequency. The results for both s < 0 and s > 0

can be understood in terms of the eigenfrequency of this mode being very

sensitive to, and primarily determined by, the rotation of the outer

portion of the column.

Constrasted with the behavior of the (1,0) mode is that of the

(2,0) mode, as shown in Fig. 3.7. As s takes on negative values, the
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eigenfrequency changes quite slowly, and remains well into the right

half plane. The growth rate of the mode is reduced, but it remains

unstable for the values of s considered. The effect of having s > 0

is similar to that for the (1,0) mode, in that it increases the growth

rate and real frequency, although the effect on the growth rate is not

as strong.

The general behavior shown by these modes can be deduced

from approximate solutions based on quadratic forms, as given by
38

Perkins and Jassby. However, direct comparison with the solutions

is not quantitatively useful due to some ill-defined quantities in

their theory. Further, the use of quadratic forms depends on the

shapes of the eigenfunctions, which are not given by the theory and must

be guessed. Our solutions, on the other hand, do give the eigenfunctions.

It is interesting to compare the changes in the eigenfunctions

of the (1,0) and (2,0) modes as s is varied. These are shown in Figs.

3.8 and 3.9 for the case of uniform rotation (s = 0), and for nonuniform

rotation with s = -2.5 see Eq. (3.48) . We plot the wave variables of

experimental interest, efb /I. and n /n , showing their relative

amplitudes and phases. The behavior of Y can be found from the plot

of n /n since, from Eqs. (3.18) and (3.26),

1 "l¥(r) oc ± _i . (3.49)
r no

For uniform rotation, note that both modes have significant amplitudes

throughout the bounded region. However, the (2,0) mode is somewhat more

concentrated toward the outer boundary, a trend which continues with

higher order m modes, as shown numerically by Chen. This is

consistent with the fact that Y varies as r near the origin as

shown in Eq. (3.46). Once the eigenfrequency, W, is known, the relative

phase shift between e0,/T. and n-,/nn can be calculated directly from

Eq. (3.18), since the eigenfunctions have no phase shift radially for

uniform rotation. The relative phase shift is quite large, ~ 180 , for

this mode.

For nonuniform rotation (s = -2.5), the most significant

effect i¥ the "localization of the eigenfunction for the (2,0) mode, while
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the (1,0) mode remains quite spread out. This can be understood

physically as follows. The shear in the rotation frequency means that

the wave cannot remain in phase radially as it propagates azimuthally.

This effect is accentuated for higher m numbers due to the fact that

they have increasingly rapid azimuthal phase variations. It is just

this type of localization for higher order modes which allows us to use

rectangular slab geometry in Section 4 to discuss drift waves. We

would not expect this approximation, to work well for m = 1 modes,
43

however. This has been confirmed experimentally for drift waves.

Also note the sizeable radial phase shifts which now appear for the

eigenfunction. These provide a convenient parameter for comparison

between theory and experiment, as we shall see in Section 3.4. Finally,

the eigenfunction n /n for the (1,0) mode has quite a sharp variation

near r = 1.5r . Since the eigenfrequency for this case is quite close

to the W -axis (see Fig. 3.6), it illustrates the numerical difficulties
r

experienced as the W -axis is approached, in that the eigenfunction

appears to be becoming singular.

3.3.3 Solutions for Abrupt Shear

We consider the effects of abrupt shear by allowing W to
E

take on the form

WE = 2 - a (r/rQ ^ 1.2) ,

W£ = 5a(r/r0 - 1.4) + 2 (1.2 ^ r/rQ <. 1.4) ,

W = 2 (r/r S 1.4) . (3.50)
£j U

A set of these profiles is shown in Fig. 3.10, where a is allowed to

take on various values, and the radial boundary is at X - 4. For

a = 0, we have uniform rotation, while, as a increases, the shear

becomes more abrupt.
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1.0

2.0

3.0 r/r,

Fig. 3.10 Rotation frequency profile, W , due to the electric
E

field, as given by Eq. (3.50).

The loci of the eigenfrequencies of the (1,0) mode and (2,0)

mode as a is varied are shown by the full lines in Figs. 3.11 and

3.12, respectively. Also shown for comparison are the loci for uniform

rotation as W is varied (dashed line) and the loci for the profile
E

given by Eq. (3.50), but with the zero order ion inertia or centrifugal

force term neglected in the differential equation (chain-dot line). The

effect of neglecting the centrifugal force term was discussed in

Section 3.2.1 for uniform rotation, where Eq. (3.37) gives the real

eigenfrequencies which result. Again, the centrifugal force term is
2

more easily identified in Eq. (3.25), where it is the (w -co .) term,
E Di

than in Eq. (3.27). The solutions in Fig. 3.11 for the (1,0) mode show

that the various profiles of W have very little effect on the eigen-
E

frequency. The solutions when the centrifugal force effect is neglected

show that the shear can cause instability for the (1,0) mode, but there

is no apparent correlation between the two curves. Thus, for this mode,

it is necessary to solve the full .differential equation, including the

centrifugal force effect. As for gradual shear, the behavior of the

solution can be explained as the eigenfrequency being primarily determined

by the rotation of the outer portion of the column.
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Fig. 3.11 Locus of the eigenfrequency of the (1,0) mode

with X = 4. , as a is varied in Eq. (3.50);

_. ._. f with centrifugal effect neglected; ,

for uniform rotation.

The behavior of the (2,0) mode, as shown in Fig. 3.12, is

quite different from that of the (1,0) mode. As the profile of W
E

changes from uniform rotation, the growth rate of the (2,0) mode begins

to decrease, but then, for a > 1.0, it increases. In comparing this

with the solution when the centrifugal force effect is neglected, it is

seen that the curves are very similar for large shears. Thus, the

increase in the growth rate seems associated with the velocity shear

rather than the centrifugal force. In this respect, the instability has
37,38

become more like a Kelvin-Helmholtz instability. The curves in

Fig. 3.12 illustrate the transition from centrifugal instability for

uniform rotation (a = 0) to instability driven primarily by velocity
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shear (say a = 2) . The behavior of the (2,0) mode is representative

of the higher order azimuthal modes which can also exhibit Kelvin-Helm-
37,38

holtz type instability.

The forms of the eigenf unctions of the (1,0) and (2,0) modes

for abrupt shear are shown in Fig. 3.13. They correspond to a = 2 for ;

the W profile in Fig. 3.10. Despite the different behavior of the
E

eigenf requencies for the two modes, their eigenf unctions are quite

similar. The shear has little effect on n /n , while it has a pronounced

effect on e0 ,/T. . These eigenf unctions may be compared with those

shown in Figs. 3.8 and 3.9 for uniform rotation (a = 0) , and for gradual

shear. In the latter case, both n-,/nn and e0,/T. are significantly

affected by the shear. It should be noted that, by Eq. (3.49), Y is

nearly constant through the shear region for abrupt shear since n /n

is nearly constant in this region. This is a basic assumption used in

several approximate analyses of the Kelvin-Helmholtz instability, one
*3 7 *3 ft

by Kent et al. , and the other by Perkins and Jassby.

In conclusion, we emphasize that the solutions found in this

and the previous subsections, for the profiles of W shown in Figs.
E

3.5 and 3.10, also give solutions for the profiles (1 - W ) . This is
E

due to the symmetry property of Eq. (3.27), as mentioned in Section

3.1.2. The new eigenf requencies are -W , and the eigenf unctions are
*

Y . This is a particularly useful result, since it doubles the number

of profiles of W for which we have numerical solutions.

3 .4 Comparison with Hollow Cathode Arc Experiment

3.4.1 Experimental Measurements

We now turn to use the results of the earlier parts of this

section to explain some experimental measurements of low-frequency

instabilities in a plasma discharge. The experimental results have been

obtained by D. B. Ili'c, at Stanford University, on a hollow cathode arc
66

discharge of the type described by Lidsky et al. The details of the
67~

experiment are available in a recent report. To summarize, a cylindrical

discharge tube of 10 cm diameter pyrex glass is immersed in an axial

magnetic field uniform to ±2% over one meter and variable to 2.5 kG. The

discharge itself is produced between a cathode of 3 mm diameter tungsten
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tubing impregnated with barium-oxide, and a 2.5 cm diameter copper anode,

at opposite ends of the discharge tube. The discharge runs at a voltage

of ~ 50V and a current of ~ 10 A. The argon plasma produced has a peak
no Q

density of ~ 10 particles/cm and .an electron temperature of ~ 5 eV at
-4

a background pressure of ~ 1 X 10 Torr. At this pressure, the plasma

can be taken to be fully ionized with singly charged ions. Langmuir

probe measurements of plasma density and electron temperature show that

both decrease radially. The density profile can be approximated by a

Gaussian profile, while, as we saw in Section 3.1.2, the variation of

electron temperature is not of direct importance to the waves being

studied. However, we shall see below that this temperature variation is

needed in order to calculate the DC radial electric field in the plasma.

The profile of the radial electric field can be changed by

varying the potential on a hollow copper cylinder, which comes in

contact with the plasma since it is located just inside the discharge

tube at the cathode end. This copper cylinder is also used as an anode

when igniting the discharge, and is thus known as the starting anode. As

the electric field profile is changed in this manner, two separate low-

frequency instabilities can develop: one is an m = 1 mode at a frequency

of ~ 9 kHz, which appears when the starting anode is left floating; the

other is an m = -1 mode at ~ 7 kHz, which appears when the starting

anode is grounded to the cathode. The starting anode assumes a voltage of

~ 50 V when left floating, and, for a range of starting anode potentials

between this value and O V (grounded), both modes are stabilized. There

is no axial variation detected for either mode, and the ion cyclotron

frequency has a value f . = 50 kHz (B = 1.3 kG). The measured radial
C1

eigenfunctions of density, n and potential, 0 for these modes are

shown in Figs. 3.14 and 3.15. The potential measurements were obtained

from an electrically floating Langmuir probe, while the density was obtained

from measurements of the ion saturation current to the probe. We shall

compare these measurements with theory in Section 3.4.2, but first the

form of the electric field profile needs to be determined for each mode.

To find the electric field, we must correct the measured

floating potential, 0 , as obtained from the Langmuir probe, in order to
68

obtain the space potential, 0 . The standard procedure is to take
s
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(b) density, n , for the m = 1 instability. , amplitude;

, phase.
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I.Or

Fig. 3.15 Measured radial variations of (a) potential, 0 , and

(b) density, n , for the m = -1 instability. , amplitude;

, phase.
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T
0 = 0 + c -^- , (3.51)
s f e

where T /e is the electron temperature in volts, and c is a constant.
e'

Thus, the form of the electron temperature profile affects the electric

field E [= d0 /dr]. There is no precise value calculated for the
s 68

constant c in Eq. (3.51), although a value of around 4 is often taken.

We have taken values of c = 4 and c = 2, and compared the results in

Fig. 3.16, where -E/r is plotted as a function of radius. The quantity

-E/r is used since a negative electric field corresponds to an JE^ * J3

velocity in the right-hand sense. It should be stressed that these curves

should be considered only approximate, as they depend quite sensitively

on the electron temperature measurements and the validity of the probe

theory. We have not attempted to extend the determination of the

electric field to very near the axis, as there are large gradients in

temperature and potential, and the measurements are less certain there.

From the approximate profiles in Fig. 3.16, we see that, for the m = 1

mode, the electric field is mostly negative, and varies rapidly in a

region about half-way to the wall. On the other hand, for the m = -1

mode, the electric field is positive and smaller, and does not have any

rapid variations.

3.4.2 Comparison between Theory and Experiment

Comparison between theory and experiment is complicated by

the difficulty of obtaining reliable measurements of the electric field,

as mentioned in Section 3.4.1. However, the measurements are consistent

as to the basic forms of the electric field, and using approximations to

them, we can explain both the m = 1 and m = -1 instabilities observed

experimentally, including good correlations between measured and computed

eigenf unctions of density and potential.

The instabilities can be explained by referring to the

wave solutions for uniform rotation in Section 3.2.2. For a negative

electric field, the rotation of the column due to the E X 3 drift is
~0 ~

positive, i.e., in the right-hand sense, and, for a large enough rotation

to overcome finite ion Larmor radius stabilization, the column becomes

unstable in the m = 1 mode (see Fig. 3.4). This is what is observed

when the starting an̂ d̂ ^ J.eJJ;_f lAâ tlng-̂ — a-nd— tfte-̂ -aallal~elFct"rTc field"

81



o
IT)

Q
in

O

V3
0°

i

co
HI

•s .a
•o
0)
^
3
CQ
OJ

1

S
O
S-i

<H

•o
CU

•H

0>
•a
CO
as
w
0)

<H
O

P.

•o
i-H
CU
•H
«H

-P
O

T3
0)

0)

P.

•P
•rl

II

8

X!•p

0)

O
•P

"S
al

C
0)
(0
a>

-p
•H

CO

11
a

«H

M
•H

82



is negative. As the potential of the starting anode is lowered, the

m = 1 mode stabilizes, as one would expect from finite ion Larmor

radius effects as the electric field decreases (see Fig. 3.4). When the

starting anode potential is depressed further, the sign of the electric

field becomes positive, in which case the m = -1 mode should become

unstable, which is observed experimentally. It should be stressed that

the electric field strength required to make the m = -1 mode unstable

is much less than that required to make the m = 1 mode unstable. This

can be seen clearly from Fig. 3.4 or Eq. (3.36).

To compare the theory and experiment in more detail, we have

computed the eigenfunctions of density and potential as described in

Section 3.3.1. The experimental parameters used in this calculation

include r - 5 cm, a Gaussian number density profile with r = 2.2 cm,
b u

and an ion temperature of 3 eV. The density profile is a good

approximation to the measured data, and, although the ion temperature

was not directly measured, there has been experimental evidence for
69

values of this order. The possible origin of this large ion temperature

is discussed later in this subsection. Due to uncertainty in the electric

field measurements, the choice of the electric field profile used in the

calculation is guided by the shape of the experimental curves in Fig.

3.16, and the profile which gives the best agreement between the

theoretical and experimental eigenfunctions. The profiles selected

are shown in Fig. 3.17. For reference, the initial slope of the
2

electric field for the m = 1 mode of Fig. 3.17 is 4 V/cm

The computed eigenfunctions for the perturbed potential, 0 ,

and perturbed density, n , for the m = 1 mode are shown in Fig. 3.18.

They are to be compared to the measured eigenfunctions shown in Fig.

3.14. The forms of the two sets of curves are very similar. The

potential amplitude has a two-humped profile for both the theoretical

and the experimental curves, the inner maximum being larger. There is

also a large phase shift associated with the minimum in the potential

curve. Given that n /n varies slowly with radius [Figs. 3.1 and

3.18(b)], we can see from Eq. (3.18) that the potential profiles .are

controlled by the value of (tu-u) •) • Thus, the minimum in |0 | , and the

large phase shift, occur where (w-to) has a minimum. There is also
E - - - - - - - - -
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Fig. 3.18 Calculated eigenfunctions of (a) potential, 0 , and (b)

density, n , for the m = 1 mode. Comparison to be made with

Fig. 3.14. amplitude; phase.
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good agreement with the profile of n . It has a single maximum close

to the center of the column and a gradual phase shift near the outer

boundary. The phase shift between n and 0 is in fair agreement

with theory, the theoretical value being about 25% higher than the

experimental value. The computed eigenfrequency is to - (0.18 - i 0.24)w ,

which gives a real frequency of ~ 3 kHz as compared to an observed

value of ~ 9 kHz. However, as we saw in Section 3.2.2, the position of

the radial boundary has a strong influence on the frequency of the

m = 1 mode (see Fig. 3.3). Also, from the solutions in Section 3.3, it

is apparent that the frequency of this mode is sensitive to the value of

the electric field near the other radial boundary, a parameter which

could not be measured accurately. Thus, we do not consider the frequency

discrepancy as serious.

For the m = -1 mode, a small, positive electric field will

cause instability, which is indeed the type of profile observed for this

mode. The electric field profile taken for the m = -1 mode, shown in

Fig. 3.17, implies nearly uniform rotation. Thus, increasing the

magnitude of W has only a small effect on the eigenfunctions, as can
E

be seen from the solutions in Section 3.2.2. The other experimental

parameters are the same as for the m = 1 mode. The computed eigen-

functions are shown in Fig. 3.19, and should be compared with the

experimental curves of Fig. 3.15. In contrast to the m = 1 mode, both

the experimental and theoretical potential profiles now have a single

maximum located nearer the outer boundary. The phase shift is more

spread out, and can again be attributed to the behavior of (u-w ), as
E

seen from Eq. (3.18). The density fluctuation has its maximum amplitude

nearer the center, with only a gradual phase shift radially. The phase

shift between n and 0 is only about half of that measured. The

computed eigenf requency is u> = (-0.10 - i 0.05)u> ', which gives a real

frequency of ~ 2 kHz compared to an observed value of ~ 7 kHz. This

is consistent with the low value of frequency calculated for the m = 1

mode as discussed above.

From these results, it is seen that the theory of this

section can reproduce the salient features of the two instabilities

observed in the HCD. The discrepancies between the theory and the
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experiment are in the precise values of certain quantities,

particularly frequency and phase shift, rather than the qualitative

behavior of the instabilities. In part, this may be due to the fact

that the instabilities measured are nonlinearly saturated, whlle: the

theory considers only linear effects. In addition, a strong radial

electric field (up to ~ 10 V/cm) is present in the experiment; for

the parameters of the experiment, this implies that the E,, X B velocity
~*-*Q "̂ *

is of the order of the ion thermal velocity. Thus, the ions do not act

strictly like a guiding-center fluid; we believe it is this effect which

causes the ion temperature to appear to be as high as ~ 3eV, and gives

the observed finite Larmor radius stabilization. Although a more precise

determination of this effect would require a kinetic theory to

accurately describe the ion orbits, we believe that the experimental and

theoretical agreement shown here demonstrates that fluid theory accounts

for the basic features of the instability. Good agreement has also been

found between observed and calculated eigenfunctions for Kelvin-Helmholtz
38

instabilities in other experiments , where the fluid description of the

ions is not strictly justifiable. In this connection, it may be noted

that while the rotation of the column is nonuniform, especially for the

m = 1 mode, we regard the velocity shear as modifying the simple

centrifugal flute mode for uniform rotation, rather than giving rise to

a Kelvin-Helmholtz type instability due to velocity shear. This is

supported by our study of the effect of sharp velocity shear on the

m = 1 mode in Section 3.3.3.

There have been other reports of low-frequency instabilities

in the HCD, but the theories given to explain them have in general employed

rectangular geometry, neglecting cylindrical geometry effects. These are
67

discussed elsewhere. However, it is clear from the theory of this sectioi

that cylindrical geometry effects are very important in the low-pressure

HCD, due to the large JE X B :

these effects must be included.

HCD, due to the large JE X jj rotation. Thus, in describing instabilities,
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4. WAVES PROPAGATING AT AN ANGLE TO THE MAGNETIC FIELD

The flute waves studied in Section 3 are generally most unstable

due to centrifugal effects for propagation perpendicular to the magnetic

field. As the waves propagate at an angle to the magnetic field, their

characteristics are modified, and they can be unstable in the absence of

cylindrical geometry effects. This transition region has been studied
63

by Chen.

When propagation is at an angle to the magnetic field, the nonzero

axial wavenumber, k , allows for a phase shift between the potential and
z

density fluctuations of the waves. This phase shift facilitates the

release of potential energy associated with a density gradient perpen-

dicular to the magnetic field. These unstable waves are usually called

drift waves, and they can occur in both collisionless and collisional
42

plasmas. For these waves, the phase velocity perpendicular to both

the magnetic field and the density gradient is close to the electron

diamagnetic velocity, while the phase velocity along the magnetic field

is between the ion and the electron thermal velocities.

In this section, we shall only consider collisional drift waves,

also known as resistive drift waves. They were first studied by
39 40 41

Moiseev and Sagdeev in 1963, and by Chen ' in 1964-65. Since these

early papers, a number of theories have appeared which include various

effects neglected previously, in order to obtain better correlation with

experimental observation of these instabilities, most notably in

Q-machines. These effects include ion collisional viscosity, first order

axial motion of the ions, electron heat flow, and zero order axial drift

(current) of the electrons. In Section 4.1, we derive the complete

dispersion relation, including all of these effects, and compare it with

the theories to date. In doing so, we use rectangular geometry, and

assume weak gradients. This allows us to Fourier transform in space,

which leads to an algebraic dispersion relation.

In Sections 4.2 and 4.3, we solve this dispersion relation for

parameters appropriate to a Q-machine experiment, using various common

approximations, and show what effects they have on the solutions. We

p_ay ^articular. a,tten.t-ion. to--t-hs--maaae-r--i-n--whxc'h"'weinterpret the solutions
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for axially bounded systems, as prescribed in Section 2. Section 4.3
45

also contains a discussion of the entropy wave, which can be unstable

for certain parameter ranges. In Section 4.4, we make direct comparison
.. " - . • • " . . " • ' 4 7

with some measurements of drift waves from a Q-machine experiment, to

illustrate the practical importance of both the common approximations to

the dispersion relation, and the interpretation of the solutions.

4.1 Basic Theory

4.1.1 Steady State Plasma

The model we use in this section is a fully ionized plasma

in rectangular geometry, with a uniform magnetic field in the z-direction,

and a number density gradient in the x-direction. The model is shown in

Fig. 4.1. The plasma is uniform in the y- and z-directions, and the

ions are singly ionized. There may be a uniform DC electric field in

the x-direction and/or z-direction. For reference, the z-direction will

be known as the axial or parallel direction. The electrons and ions have

a common uniform temperature, T , as is approximately true, for example,

in Q-machines and also in the nighttime ionosphere.

dnc
dx

B

Fig. 4.1 Model of the plasma in rectangular geometry,

showing the DC quantities and the direction of wave

propagation.
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58
We use the two-species moment equations given by Braginskii.

These will be very similar to those used in Section 3, except that we

will include the effect of ion- ion collisions in the ion viscosity

tensor, and allow for particle motion along the magnetic field. The

particle localization necessary for a fluid approach is again caused by

the magnetic field for motion across the magnetic field, and by particle

Coulomb collisions for motion along the magnetic field. For the ions, we
45

make the isothermal assumption; as has been shown by Tsai et al.,

inclusion of an ion energy equation has very little effect on the drift

waves. The basic equations for the ions are consequently the continuity

equation,

= 0 , (4.1)

the perpendicular momentum transfer equation,

nmi ^il = - TiV - (Vi)JL + en(E± + vu X B) , (4.2)

and the parallel momentum transfer equation,

on ~ ST

nm. — - v. = - T. ̂  - (V •T.) + enE + C m nV . u + C n —-^ . (4.3)
i dt iz i oz -~>i z z r e ei z t Oz

Here u = v - v. , C = 0.51, and V is the electron- ion collision
z ez iz r ei

frequency for momentum transfer, which accounts for the parallel

resistivity. The last term in Eq. (4.3) is the thermal force term with

C = 0.71. The other symbols are analogous to those defined in Section
•*•»

3, except that it. now includes ion- ion collisions. The explicit form

of the viscosity tensor is now quite lengthy and is given in Appendix D,
2 2

where it is assumed that w . »V.., with V being the ion- ionci 11 ii
collision frequency. Also in Appendix D are the definitions for V

ei
and V ...

For the zero order ion velocity, we solve Eq . (4.2) with the

assumption that X = (̂ n
0/̂

x)/no
 is a constant, which leads to
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Here v [= - T X/eB] is tne diamagnetic drift speed (note that X < 0 if

the density decreases with x) and v _[= - E /B] is the E X B drift
Ji \J X \J f**J\J <~̂ ~l

speed. In this zero order solution, the effect of viscosity ds neglected

as being small; no inertia term arises since, rectangular geometry is .used.

The appropriateness of taking X constant and also neglecting possible

cylindrical geometry effects for interpreting experimental results is

discussed in Section 4.1.3. In any event, unlike the flute waves

studied in Section 3, drift waves do not depend on zero order ion inertia

for instability; the charge separation needed for instability is provided
40

by electron resistivity along the magnetic field lines. Finally, zero

order axial velocities can arise due to the electric field E _. However,
zt)

due to much larger inertia of the ions, their DC drift is much smaller

than that of the electrons, so we may take v. =0.

We do not make the isothermal assumption for the electrons,

since axial heat flow may be important. There are then three basic

equations for the electrons: continuity, momentum transfer, and heat

transfer. The continuity equation is

|2 + V • (nve) = 0 . (4.5)

Neglecting inertia and resistivity terms compared to the v X B term,r̂ -«0j_ • •
the perpendicular momentum transfer equation is

0 = - v, (nT ) - en(E. + v X B) . (4.6)
1 e ~J- ~ej. ~-

Including resistivity, the parallel momentum transfer equation is

3 5 •
0 = - -5— (nT ) - .enE - C m nV u - C n V T . (4.7)

Oz e z r e ei z t °z e

Finally, the heat transfer equation is

o dT nT -i /C „ nT $Tedn . e * 3 / eX e e
dt e dt 2 J- z ^ ^T^

\ e ei

\ 2 aT
- C n T u = m C V . n u + C n u - ^ , (4.8)

t e z / e r e i z t z < 5 z
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where C = 3.2 is the electron thermal conductivity coefficient.

To find the zero order electron motion, we solve Eqs. (4.6)

and (4.7). Equation (4.6) yields

where v and v are defined in Eq. (4.4). Since we have taken
D EU

v. _ = 0, Eq. (4.7) can be used to obtain
izO

e r ei

We thus see that the zero order motions of the ions and

electrons are closely analogous to those found in Section 3 [Eqs. (3.4)

and (3.14)], i.e., there is a diamagnetic drift term and an E X B

drift term. However, we now also allow for motion along the magnetic

field. As we shall see from the perturbed equations, it is the first

order axial motion of the electrons which can lead to instability, while

the zero order axial motion (or current) may aid or oppose this

instability.

4.1.2 Perturbed Plasma

Following the procedure in Section 3, we perturb the equations

describing the plasma configuration about the zero order state found in

the previous subsection. The variables n, E, v , v , and T are~ ~i ~e e
assumed to have the general form

n(x,y,z) = n (x) + n exp i(wt - k x - k y - k z ) , (4.11)
u J. x y z

where, of all the zero order variables, only nn varies with x. The

first order variation implies that the equations have been Laplace

transformed in time and Fourier transformed in space. For this spatial

variation to be accurate, k must be assumed large compared to x> the

inverse of the density gradient scale length. This is associated with

the local approximation, which is discussed in Section 4.1.3. Further-

more, we neglect all odd powers of k in the dispersion relation. This
X

is to simulate normal mode type behavior in the x-direction (or radial
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45,59
direction in cylindrical geometry). Finally, the waves are assumed

to propagate at large angles to the magnetic field, such that kj_ » k ,
2 2 2 Z

where kj_ = k + k . The remaining assumptions are the same as for the
x y

flute waves in Section 3, i.e., the waves are low frequency (ui « to .),
ci

quasistatic (E = -V0,), and quasineutral (n = n ).

First, we perturb the ion equations [Eqs. (4.1) - (4.3)].

To find.the perpendicular ion velocity, we evaluate the ion viscosity

term using Appendix D, keeping only the significant terms subject to the

assumptions mentioned above. This gives

Vi
p p

where C. = 3/10, b - k . p . , and to = k v is the diamagnetic frequency,
i - " - i D y D

Using Eq. (4.12) in Eq. (4.2) then yields.

k , .i ^j- i \j i A b '•̂ J- n.
v. n = 7—7- S - i i Xk. (1 - -) (M + -r- - iC bV. .)

- ~ z ̂ ^ 2 w l 2 i n
ci •

(
nT e0-A r w •' w "I n. 11 1\ ., b.-> i D . _ . . .? 1 I

~0
 + VJ +"»l(1'5>- - ̂ <Ul + ̂  - ^"'-J %/'

(4.13)

where LO = co - k v in analogy with the w used in Section 3..
1 y EO 1

Unlike in the iterative method of solution used to find the ion velocity

in Section 3, we do not assume the inertia and viscosity terms are small

in deriving Eq. (4.13). If the iterative approach were used, we would

find an ion velocity as in Eq. (4.13), but with the term l/(l-b)
2

expanded as (1+b) and all b terms neglected. This expansion is usually

valid since b « 1 for fluid theory to be strictly justifiable.
70

Watanabe and Hartman have noted that there are two slightly different

basic dispersion relations in the -literature which may be related by

expanding l/(l-b) terms as they appear in the final ion equation

relating only n and <b . It is just the two methods of solving Eq.

(4.13) for v. which leads to this difference. Using Eq. (4.13) leads
~ 70

to the dispersion relations derived by Watanabe and Hartman, and by
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47
Rowberg and Wong, while the iterative method of solution leads to the

43 45
dispersion relations of Hendel et al., and Tsai et al. In practice

there is little difference in these, except perhaps in the region where

b is not very small, and the fluid description is less reliable.

To find the ion parallel velocity, we add Eqs. (4.3) and

(4.7), and use the relation

1 (V • T. ) = (iw - 4C.bV. .)v. (4.14)
n m. ~i z D i ii izl

obtained from Appendix D. This yields

+ TQl/Tn"
(4.15)Vz

mi

Of* / f\ _I_ T* /T"
2ni/nO + Tel/T0
w - i 4C bV
1 i 11

We can then eliminate the velocity from the first order ion continuity

equation [Eq. (4.1)] to give

n e0

The CC's which relate the first order variables in this equation are

2
2TOkz (1-b) . .2

aii = '"I + — (^ - i ̂.bv..) + icib ̂ ii •

a = -bw + u) (l-b) + iC.b2v.. , (4.17)
•L" -L i) 1 i 1

2

a _ 2T°kz d-b)_
13 m. (w, - i 4C bV. .)

i 1 i 11

The reason that the electron term T .. appears in the ion continuity
el

equation is because the ions and electrons are coupled together by

electron-ion collisions.

We now turn to consideration of the electron equations. It

is straightforward to solve Eqs. (4.6) and (4.7) for the first order

electron velocities, resulting in
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TQ

n n i i0 z / 1 1 , . elvezi = m c v . I IT ~ ~T: + (ct+1) TT
e r ei \ 0 0 °

+v _ _ ± + i _ S i + v . • . (4.19)
ez° V no 2 V lzl

Upon substituting these into the perturbed electron continuity equation

[Eq. (4.5)], we obtain an additional first order equation

n e0 T

no o o

The new CC's in this equation are given by

"21 ~ ~1 m. (u) - i 4C.bV.. ) ra C v .
i 1 i 11 e r ei

iT k
a22 =-"D + drv-: • (4-21)

e r ei

-2 2
3 n^ /'^-^l^ . n^

«„„ = - - k v
23 2 z ezO m. (to - i 4C bv. .) t m C V .

i 1 i 11 e r ei

A third first order equation is obtained by substituting the electron

velocities into the electron heat transfer equation [Eq. (4.8)], which

gives

= o. (4.22)

This final set of the CU's can be written as

TQ 33 TQ
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31

a
32

T k
u> + k v + i C —̂ -— ,
1 z ezO t m C V .

e r ei

1 K

-WD ' 2kzVezO - i Ct ̂TcV- '
e r ei

a
33 2(Ct+1)VezO + ̂ v̂V Ct(Ct+1)^

Tnk0 z

(4.23)

2

e r ei

Here we have neglected the zero order joule heating due to the zero order

electron current.

Equations (4.16), (4.20), and (4.22) provide the three

equations for the wave variables n , d> , and T • The dispersion

relation is obtained by requiring that the equations give non-trivial

solutions for the variables. This means that the determinant of the

coefficients of the equations must be zero; that is,

D(w,k) =

11 a

a
21

a
31

12

22

32

a.
13

23

a
33

= 0 (4.24)

This dispersion relation is quartic in u> and of sixth order in k .
z

A number of dispersion relations have appeared in the literature which

neglect some of the effects included in Eq. (4.24). Those we shall

consider include ion collisional viscosity, but neglect various

combinations of the following effects:

(a) first order ion axial motion;

(b) electron heat transfer (non-isothermal theory for

the electrons);

(c) zero order electron axial drift (current).

These theories are summarized in Table 4.1, which also gives the order

of the dispersion relations in u> and k .
z
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Table 4.1

Comparison of Various Drift Wave Dispersion Relations

Effects . ,. Order Order
Authors . . -

Neglected in co in k
z

43a,b,c Hendel, Chu and Politzer; 2 2 (even)
47

Rowberg and Wong
45a,c Tsai, Perkins and Stix 3 4 (even)
OQ

a Tsai, Ellis and Perkins 3 4 (odd)
71

c Schlitt and Hendel; 4 6 (even)
70Watanabe and Hartman

none Present work 4 6 (odd)

In Sections 4.2 - 4.4, we shall investigate the effect of

these approximations, and show how they are important for interpreting

experimental results. In solving the dispersion relation, we interpret

the solutions in the manner described in Section 2 for an axially

bounded plasma, and contrast this to the usual interpretation of the

solutions.

4.1.3 Comment on the Slab Model

Before the dispersion relation is solved, some discussion is

in order as to how the results of the rectangular geometry.model assumed

here can be applied to geometries of experimental interest; in

particular, the cylindrical geometry found in plasma sources such as

the Q-machine. Drift waves, as observed in Q-machines, are found to be

localized to a limited radial region where X [= (dn /dx)/n ] is
43,69 ° °

approximately constant. This localization can arise due to shear

in either the diamagnetic velocity or the E X B .velocity. Shear in

the diamagnetic velocity can localize the waves to a region where X
i l 4 5is constant, when |xl decreases on either side of this region.

38
Perkins and Jassby have shown that localization can also occur for

drift waves when there is a shear in the E_ X B velocity for a constant
~0 ~

X- This type of localization is analogous to that seen in Section 3.3.2
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63
for the m = 2 azimuthal mode of the flute wave. In addition, Chen

has found from numerical solutions in cylindrical geometry that, even in

a uniformly rotating plasma column (no shear), the higher order

azimuthal modes for drift waves become progressively more localized.

Thus, in the theory of Section 4.1.2, we take X to De constant, which

implies n varies exponentially with x. The only dependence in the

dispersion relation on the number density, n , and thus the x-position,

is then through V.. and V .. Since V.. is stabilizing and V .
11 ei 11 ei

is destabilizing, these effects tend to cancel out. Because the waves

are assumed to vary as exp(-ik x) in the x-direction, we have taken
X

only even powers of k in the dispersion relation, to simulate normal
X

mode behavior of the localized waves.

In applying the rectangular slab model to cylindrical

geometry, we imagine the slab of thickness Ar being bent into a

cylindrical form as shown in Fig. 4.2. The x-direction then corresponds

to the radial direction, and the y-direction corresponds to the

azimuthal direction. The waves localized to this slab give a good

representation of waves localized radially in the column, provided

Ar/r « 1, as shown in Fig. 4.2. This latter restriction is one

condition needed for cylindrical effects to be negligible. In addition,

it is assumed that the radial electric field is not too large, so that

centrifugal force effects may be neglected.

Fig. 4.2 Rectangular slab model with coordinates (x,y,z) applied to

cylindrical geometry with coordinates (r,6,z).
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It should be mentioned that the rectangular geometry model

may be applied directly to the ionosphere, which has the ingredients for

drift waves, i.e., a density gradient, a magnetic field, and finite

resistivity. We shall not pursue this study, but the general

characteristics found for the drift waves may be applicable to the
72 ' '

ionosphere.

4.2 Solutions to the Isothermal Dispersion Relation

4.2.1 Basic Drift Wave Characteristics

The simplest dispersion relation for the drift waves is

obtained by making the isothermal assumption for the electrons, and

neglecting ion axial motion. This dispersion relation is found by

neglecting all the terms in the CC' s which have (u) - i 4C.bV. .) in

the denominator, as these arise from ion axial motion [see Eq. (4.14)].

The upper left-hand co-factor of the determinant in Eq. (4.24) is then

set equal to zero, i.e.,

(4.25)

This has the effect of letting T = 0, and neglecting the electron

heat transfer equation [Eq. (4.19)]. The resulting dispersion relation

is

2
D(w,K) = w2 (1 + b)K

b v C.bV. w

C.bv.K
(1 - b)K
b v

- C bV
i i

= 0. (4.26)

where the normalized quantities are

ii
(4.27)

At this point we have set E - = 0, so that to = w - k v = 10.
xO 1 y EO

The reason is that a finite E simply produces a Doppler shift in
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frequency (note that u> appears in the Q!'s always via u> ), so this

effect can easily be accounted for after the dispersion relation has

been solved for io(k). The dispersion relation is essentially that of
43 47

Hendel et al., and Rowberg and Wong, the difference being that we

take the ion viscosity coefficient to be C. = 3/10, as given by
co

Braginskii, while they take C. = 1/4. Also, that of Hendel et al.

differs slightly in terms involving b, as discussed in the derivation

of ^ixl [Eq. (4.13)].

Solutions to this dispersion relation have been of particular

interest lately in order to explain instabilities which arise in Q-machines.

Correlation between theory and experiment has been made in one of three

ways: comparison of the onset field and frequency for self-excited
43

unstable modes; comparison of the frequency and damping rate for
47

externally excited modes when the system is stable; comparison of the

frequency and growth rate for self-excited modes when the system is
73

unstable and feedback stabilization is switched off. In all cases, it

is found experimentally that the system is not as unstable as theory

predicts, i.e., the damping rates are larger or the growth rates smaller

•than predicted. This suggests an additional damping mechanism is present.
47

In their experiment, Rowberg and Wong identify this as end-plate

damping for end-plates which are ion-rich. From the discussion in

Section 2, this implies that we must solve the dispersion relation for

complex k in order to construct the normal mode solutions, since the
z

reflection coefficient, P, of the end-plates has |p| < 1. This approach

has not been used before.
47

We postpone a detailed comparison with Rowberg and Wong's

experiment until Section 4.4. However, in order to investigate the

behavior of drift waves in a parameter range which is of experimental

interest, we take parameters applicable to their experiment. In applying

the theory to the cylindrical geometry of the Q-machine, k is real and

determined experimentally by identifying it with m/a, where _m is the

azimuthal mode, and a is the radius at which the azimuthally travelling

wave has its maximum amplitude. In this connection, note that the

normalized frequency, W, used in Section 3, is thus a multiple of the

-f-requeircy, '«', used he~re~; the re ration is' 'W "= mw. "FurtKe'rmbre,
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k is determined from the radial wave profile (often k ss k ) , while
x x y
k is determined from the axial profile of the wave, a matter discussed

z • ' . • •
at greater length in Section 4.4. All of the other parameters are

determined with reasonable precision from the experimental conditions.

A partial mapping of K into the w-plane via Eq. (4.26)

for conditions corresponding to Rowberg and Wong's m = 2 mode is

shown in Fig. 4.3. Because D(w,K) is even in K, the real K-axis folds

on itself, and the two sheets are shown in a single diagram. The two

solutions are shown as the drift wave branch (labeled I) in the right

half plane, and the flute wave branch (labeled II) in the left half

plane. This flute wave is essentially the wave studied in Section 3

for propagation perpendicular to the magnetic field (K = 0). It is

not unstable here since we are considering rectangular geometry, which

neglects the destabilizing centrifugal force effects, and it will be of

no particular concern in this section. The drift wave branch, on the

other hand, can be unstable, and the relevant branch point of the

dispersion relation, as defined in Section 2.1.2, occurs at

w = i C b V . , K =0 . (4.28)
s i i s

Since w . , > 0, the system can never be absolutely unstable. The real
S 1

K-axis terminates for K = ± °= at w = [(1-b) + i2C.bv. ]/(l+b) , which

corresponds to stability in the limit of short axial wavelength. At

intermediate values of K, the real K-axis may or may not dip into the

lower half plane, corresponding, respectively, to convective instability

or stability, depending on the parameter values. The condition for

convective instability is

d-b)

which, for b « 1, may be approximated by

<, (Scv )"1 . (4.30)
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1/3
This gives a threshold magnetic field for marginal instability, B <*v/

C 1

The instability is driven by the potential energy available

from the density gradient. The parallel resistivity of the electrons,

as manifested by V , maintains the phase difference between n and
Q • X

0 , which is necessary for instability. Since K and V always
2 e

appear in the 'dispersion relation [Eq. (4.26)] as K /V , the effect of

varying the resistivity is seen in Fig. 4.3 by assuming K is constant

and V changes. Thus, the drift waves become stable as the
e

resistivity goes to zero (V -» 0), the frequency going to the same limit
6

as when K ~* ± °3. In this case, the inertialess electrons may stream

freely along the magnetic field lines to short out any phase difference

between n and 0 which might lead to instability.

For solutions with increasingly large values of K.,

corresponding to lossy end-plates (|p| < 1), the drift waves are

stabilized. For reference, the value of K measured by Rowberg and
r

Wong is indicated by crosses in Fig. 4.3. This demonstrates how the

length of the Q-machine can restrict the normal mode frequency to be

larger than the most unstable value.

It is interesting to consider the relative amplitudes and

phases of the wave variables n /n and e0,/Tn
 as K is varied.

Since, for the slab model, these variables have the same ratio every-

where, we choose to normalize by n /n . Neglecting ion axial motion,

we then obtain from Eqs . (4.16) and (4.17)

2e0 /T. w - i C.bv

°, _ - - ~ - 5
ln VnO bw + (1-b) - i C.bV

Here the w's found from solution of Eq. (4.26) must be used. In Fig.

4.4, we have plotted the phase and magnitude of this relation as a

function of K for several values of K.. The conditions are the same

as in Fig. 4.3. When the drift wave is unstable, the phase angle is

negative, corresponding to the density oscillation, n , leading the

potential oscillation, 0 . This phase angle becomes quite small

(~ 1-2 ) as K increases, but changes quite rapidly for small K .

The phase angle is still significantly smaller than that found for the
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Fig. 4.4 Amplitude and phase of 0 = (e0 /T )/(n /n ) for the drift
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flute wave (~ 180 ) in Section 3. The effect of solving the dispersion

relation for nonzero K. is to decrease the phase shift and the

temporal growth rate. Note that the waves are stabilized for a phase

shift of about -3 , while in Section 3 any phase shift between n and

0 (of the proper sign) implied instability. The difference arises from

the damping effect of ion collisional viscosity considered here,. For

the amplitudes, the normalized potential and density fluctuations are

nearly equal, except for small K ( < 20), when the potential amplitude
r

is smaller.

4.2.2 Effect of Ion Axial Motion

To include the effect of ion axial motion in the isothermal

approximation, we again use Eq. (4.25), but retain the terms of the Q's

with (w • - i 4C.bV_.) in the denominator. This gives a dispersion

relation which is of third order in to and of fourth order in k . It
z

has the explicit form

= 0 (4.32)

where the coefficients are given by

H
PO • i - 1 2

(l+b)K
bv

5C.bV.
e

2 -i -
K C .bV. m _

1 x i " e ir2 +
mi

4(C.bV. )2 1
+ i — — - 5C bV

b V i i
e

V
+ i

. bv . m.
+ 2

m. . .i i m.

(4.33)

We have used the same normalization as in Eq. (4.27). Two of the roots

in co correspond, to the drift wave and the flute wave, as they are

modified by ion axial motion. The third root can be labeled an ion-

acoustic wave, and arises due to the axial motion. However, it is

highly damped and will be of little concern here.
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The modification of the drift wave is most pronounced at

shorter axial wavelengths, since the new terms in the cc's appear
2 2

multiplied by k (or K ), as seen in Eqs. (4.17) and (4.21). This is
z

physically reasonable because, for long axial wavelengths, the inertia

of the ions prevents their axial motion from being significantly

influenced by the wave. This effect is illustrated in Fig. 4.5, where

the drift wave branch and the ion-acoustic branch (labeled III) are

mapped in the w-plane for the same parameters as in Fig. 4.3. We have

only included that portion of the drift wave map which is noticeably

affected by the ion axial motion. The real K-axis no longer terminates

at a finite w, and the growth rates of the instability are decreased.

This is due to a combination of the collisional viscosity associated

with the axial motion [see Eq. (4.14)] and the fact that this motion

tends to short out the axial electric field. As we shall see in

Section 4.4, these effects can be very important in experiments. For
3

large values of K (~ 10 ), the drift wave branch (I) and the ion-
*

acoustic branch (III) have solutions which are related by w ^ -w •

The axial phase velocities of the waves then approach the ion-acoustic

speed [~(T,./m.) ]. Thus, it is clear that these branches are evolving

into a pair of ion-acoustic waves as the propagation becomes more nearly

parallel to the magnetic field (K large). These waves are studied in

Section 5.

The phase and amplitudes of the first order potential and

density are not significantly affected by including ion axial motion,

and one may still refer to Fig. 4.4 for these.

4.3 Solutions to the Non-Isothermal Dispersion Relation

4.3.1 Effect of Electron Heat Transfer on Drift Waves

To include electron heat transfer in the theory, we consider

the electron temperature as a wave variable, and include the heat

transfer equation [Eq. (4.8)]. The resulting dispersion relation is

Eq. (4.24), which is now of fourth order in 10 and of sixth order in

k . At this point, we choose to leave the dispersion relation in
Z

determinant form,since it will be solved numerically. The four roots

are found by constructing a fourth ordej: equation a,g.p_rop_riate to _a g.i.ven
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74
set of parameters by the Lagrangian interpolation method, and then

solving this equation. The interpolation method requires the

determinant to be evaluated at only five points, i.e., five values of

w, for each solution.

The solutions to the dispersion relation are shown in the

w-plane in Fig. 4.6, with parameters as in Figs. 4.3 and 4.5. We have

omitted the ion-acoustic and flute wave branches because they are damped

(w. > 0), but we show the new fourth root (labeled IV) because it may be

unstable for very long wavelengths. This wave arises from inclusion of

electron heat transfer, and has been called the entropy wave by Tsai et

al. It will be considered in more detail in Section 4.3.2. By

comparing Figs. 4.3 and 4.5 with Fig. 4.6, we see that the growth of the

drift wave may be increased or decreased by electron heat transfer,

depending on the value of K. For example, with K. = 0 the growth

rate is larger for K > 22 and smaller otherwise. However, as K
r i

is increased,the growth rates decrease rapidly, and the non-isothermal

theory gives larger damping rates for all K shown. Also, the real

frequency for the non-isothermal theory is significantly lower. However,

the frequency is not a good datum for distinguishing the presence of

non-isothermal effects in experiments, because it must be corrected for

the E X J3 Doppler shift from measurements of E , which are not very

precise.

The relative ampli-tudes and phases of the first order

variables now require two sets of plots, since there are three variables.

Again we normalize to n /n , and plot 0 = (e0-i/Tn)/(n,/n )
 and

T = (T /T )/(n /n ) in Fig. 4.7. These relations can be found in
6J.Il C J. \J -L \J

terms of a's from Eqs. (4.16) and (4.20), and are analogous to Eq. (4.31)

for the isothermal theory. In Fig. 4.7(a), we see that the phase shift

between <t> and n has increased over the isothermal theory (Fig. 4.4)

for K .> 30, and may be more than twice as large. The shapes of the

curves are very similar, however. The amplitude of 0 has decreased,

the effect being most noticeable for K < 40.
r

The phase shift for the temperature fluctuations, shown in

Fig. 4.7(b), is quite large, while the amplitude is small. In spite of

this___small amplit.ude.. a. -knowledge o-f frh0 phase--and-ampiltade of "the
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temperature fluctuations is important in interpreting Langmuir probe

measurements of the phase between n and (8. , as pointed out recently
75

by Motley and Ellis.

It should be noted that the temperature fluctuations do not

appear to tend to zero as K -» 0, contrary to the proof in Appendix C

that there are no temperature fluctuations for propagation perpendicular

to the magnetic field if V^T =0. This is due to the fact that, as

K -» 0, the drift wave branch approaches w = 0 (or w =0). This

demands a special solution to Eqs. (4.16), (4.20), and (4.22), with

n = 0 =0, which leaves T , undetermined. The difficulty is
1 1 e l

alleviated when one considers cylindrical geometry, as in Appendix C,

since the analogous special solution, u> - mw = 0, does not arise in
Lt

general. Even for rectangular geometry, inclusion of any small physical

effect which would move the solution slightly off w = 0 would give

T , -» 0 for K -» 0. In fact, for the entropy wave, w 4 0 as K -» 0,
el
so T -» 0 as we shall see in the next subsection,

el

4.3.2 Entropy Wave

As mentioned above, the fourth root to the dispersion relation,

called the entropy wave, may be unstable for very long wavelengths. For

the conditions of Fig. 4.6, it becomes unstable for 5,0^< K | <, 6.5,

although only weakly so. It becomes stable for a small K. value, so

we will only consider the K. =0 case.

The relative amplitude and phase of the first order variables,

normalized to n /n , are shown in Fig. 4.8. The potential and

temperature phase shifts have opposite variations with K , but have
r

approximately equal values for instability. The amplitudes are also

quite different from those of the drift wave, the temperature fluctuation

being much larger for the entropy wave. Note also that T , -»0 as
G 1

K -» 0. A similar type of entropy wave (or temperature wave) arises in

the study of low-frequency instabilities in a weakly ionized gas when
76

electron heat transfer is considered. In that case, small temperature

fluctuations produce large changes in the ionization rate, and the

temperature waves become unstable ionization waves whose nonlinear limit
77

is identified with the striations commonly observed in positive columns.
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4.3.3 Effect of Electron Axial Drift

When there is an electron axial drift, due to an axial

electric field, for example, the system is no longer symmetric, and the

dispersion relation should contain odd powers of k (or K). The effect
z

of this axial drift can only be determined from the non-isothermal

theory, since the drift terms cancel out in the isothermal dispersion

relation [see Eq. (4.26)]. Thus, we must again solve the full dispersion

relation, i.e., Eq. (4.24). We illustrate the effect by solving the

dispersion relation for an electron drift of 5 C , where
i. S

C = (T /m.)8 is roughly the ion-acoustic speed. Since the dispersion

relation is no longer even in K, the solutions for ±K do not coincide,

and we must consider separate plots for K < 0. The .solutions are

shown in the w-plane for real K in Fig. 4.9, together with the v = 0

solutions for comparison. We see that the solutions are strongly

modified by the drift, especially for small |K| values. In fact, the

topology has changed so that the drift wave and entropy wave branches

are interconnected. For |K| ̂  10, where the drift waves can be clearly

identified, the drift is destabilizing for negatively directed waves for

K <? -22, and stabilizing for K 22. On the other hand, for the

positively directed wave, the drift is stabilizing for K. ̂  15, and

destabilizing for K -^ 15. Thus, for large |K| , the effect of the

drift is destabilizing or stabilizing, according as the phase velocity

is parallel or antiparallel to the electron drift. Also, the phase

velocity of the wave, (w/K)(m./m ) , is equal to the drift velocity for

K «» 15, and smaller than the drift velocity for K > 15, which is just

the region that is significantly destabilized by the drift. This is

reminiscent of a resonant particle type instability, where particles

drifting slightly faster than the phase velocity of the wave transfer

energy to the wave and cause it to grow, as in a traveling wave amplifier.

However, for a collisional plasma there are no resonant particle effects,

and the effect seen here arises from finite electron thermal conductivity.

This mechanism will become clearer in Section 5, when we study ion-

acoustic waves in the presence of an electron drift.

The amplitude and phase of 0 and T have quite
1 el

di-f-f-e-sen-t- -bsh-a-v-is-r-s—-for-—X~>~8—-a'nci" ~K~<~07~"as^ "shown" "in Fi'gT~^4TlO~. "For

115



P O
N

d 01
o >

W
0)

X!-p

(M

O"
W

o
N
0)

03
•rl .

0>

03
iH
a
i

o
+->

o
a

CO

b
•H

CD
rl

03

in
rl

0)
+J

(1)
S
<ti
rl

a

03
•rl

o
II

o> 10
01•* >
rl

3
faD O
•H

116



1.0

UJ
o

CL

<

0.5

Kr<0

25

o>

UJ
CO

-25

-50

Kr<0

50
|Kr|

100

Fig. 4.10(a) Amplitude and phase of 0 for the drift wave branch
1/2

in Fig. 4.9 with v n = 5(T_/m.) 'ezu 0 i

117



0.5

u
0

H 0.25
O.

K r>0

100

o>
o>
•o

UJ

X
Q. -100-

-200
100

Fig. 4.10(b) Amplitude and phase of T , for the drif t wave branch
1/2 n

in Fig. 4.9 with v .. = 5(T^/m.) 'ezO 0 i

• 118



K > 0. both 0 and T have negative phase shifts, while for
In eln

K < 0, the phase of each becomes positive as |K| is increased. For

K > 0, the amplitude of 0 is decreased, and that of T increased,

over the case when v „ = 0 (Fig. 4.7), so the enhanced stability isezO
accompanied by larger temperature fluctuations. The opposite is true

for K < 0, when 0, increases and T n decreases.In eln
In addition to the solutions for real K, we find that there

are now two branch points in the lower half plane when the dispersion

relation is solved for complex K, one at w = -0.13 - i 0.085, and
S -L

the other at w = 0.54 - i 0.045. Both of these are relevant branch
S ̂

points in the sense discussed in Section 2, so the unbounded plasma is

now absolutely unstable.

To find the normal mode solutions for this asymmetric
28

plasma, one approach is that of Tsai et al . , who consider the boundary

conditions for the end-plates of the Q-machine. These boundary

conditions are derived only in the limit of strongly electron-rich

sheaths, and neglect end-plate damping. In this limit, they obtain the

conditions

- 0 . (4.34,
0 eO eO

78
The first condition agrees approximately with one derived by Chen in

the limit of electron-rich sheaths, and corresponds to a short circuit.

Tsai et al . then construct normal axial modes from the four roots k (10)
— — z

of the dispersion relation satisfying these boundary conditions (they

neglect ion axial motion). For conditions of interest, two drift wave

roots are dominant, while two other entropy waves are heavily damped and

only have significant amplitude near the end-plates. Because the medium

is non- reciprocal, they find the modes are partial standing waves, even

though no end-plate damping is assumed.

We discuss more generally the dependence of the normal axial

modes on the terminations, when these are specified in terms of reflection

coefficients for the dominant waves, by using the procedure developed in

Section 2. It is now conyenjient tpjnap contours pf_ constant (K - K )- - - - - - - - - - r • r-
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and (K. - K.) for the dominant drift wave modes into the w-plane, as

shown in Fig. 4.11 for the same parameters as Fig. 4.8. If values of

the reflection coefficients, p and p , for these dominant modes are
J _ £ . . . .

given, either from measurements or theory, the difference (K - K ) can

be calculated from Eq. 2.28, and the normal mode frequencies read off
.̂ _

Fig. 4.11. The contour (K. - K.) = 0 is the locus of normal mode

frequencies when the terminations are perfectly reflecting. Comparing

this with the broken line representing the case v n = 0 for perfect
ezO

reflections, it is seen that the current destabilizes the normal axial.

modes over a wide range of (K - K ) values, even though this normal
r r

mode comprises a K wave and a K wave. However, the system can no

longer be completely stabilized by decreasing the magnitude of the

reflection coefficients, because of the branch points in the lower half

w-plane at w and w .

4.4 Comparison with Experiment

4.4.1 Experiment of Rowberg and Wong

As mentioned in Section 4.2.1, we shall use the experimental
47

results of Rowberg and Wong for comparison with our theory. Their

method of studying drift waves in a Q-machine is well suited for

illustrating the importance of interpreting the dispersion relation for

bounded systems properly, as described in Section 2. They use a double-

ended Q-machine, i.e., one having identical end-plates, with no DC

axial current. The drift waves are investigated by measuring the decay

of externally excited normal modes when the system is stable. The modes

are excited via a grid placed in the plasma, and the decay rate is

measured after the excitation is switched off. This has the advantage

that the waves may be kept in the linear regime by exciting them only to

low amplitudes. The system is made stable by end-plate damping of the

waves. This damping occurs when the end-plates have ion-rich sheaths,

a point discussed at greater length below.
43

Rowberg and Wong, and also Hendel et al., measure an axial

standing wave with \ > 2L for both electron- and ion-rich sheaths,
z

where \ is the axial wavelength and L the system length. The latter,
Z

who worked mostly with electron-rich sheaths, found ^ KB 2L corresponding
z
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to a condition close to a short-circuit at the sheath edge. The former,

who worked mostly with ion-rich sheaths, investigated the dependence of

\ on the potential, U, of the plasma relative to the end-plates
z
(Fig. 4.12). They found \ sa 2L for an electron-rich sheath

Z - -

(U = - O^OSV), and A =a 3.6L for an ion-rich sheath (U = + 0.5V), in
Z 78

reasonable agreement with a formula derived by Chen for the symmetric

modes:

k L k L v . / m \ 1 / 2 f 1 1 u < 0
z z _ L ei f e 1 J I
2 an 2 2p. co \2ltmi/ Jexp(-eU/T )j U > 0

(4.35)

where p. is the ion gyroradius. For electron-rich sheaths, U < 0 ,

the right-hand side of Eq. (4.35) is large, and \ =« 2L for the lowest
z

mode. For ion-rich sheaths, U > 0 , the right-hand side can become

comparable to or less than unity, and \ > 2L for the lowest mode.
z

Due to the general shape of the solutions to the dispersion relation

shown in Fig. 4.3, it is this lowest order mode which is most unstable.

If the system were longer, such that a smaller k (or K) were admissible,
Z - ; -

the drift waves would be more unstable, and possibly a higher order

axial mode could have the largest growth rate.

Equation (4.35) is derived on the assumption that k is
78 z

real, and neglects any end-plate damping of the .modes. Chen discusses

two damping processes connected with the end-plates. The first is due

to the fact that some charged particles, carrying wave energy, escape

to the end-plates and are replaced by new particles which do not have

this wave energy. For ion-rich sheaths, this applies to the ions and

should give rise to significant damping, whereas for electron-rich

sheaths, it applies to the electrons and should give little damping. In

either case, almost all the particles of the opposite charge are reflected

at the sheaths. The second process is end-plate diffusion, resulting in

randomization of the phase of ion gyration when ions are reflected at

the end-plates.

Rowberg and Wong attribute the discrepancy between their

observed and calculated growth rates for ion-rich sheaths to the loss of
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ions at the end-plates. Following Chen, they calculate an associated

temporal damping decrement u) = (dN /Bt)/N1 , where N is the total

number of perturbed ions in the column, and oN/St is the rate at

which such ions are lost by recombination at the end-plates. For ion-

rich sheaths, the decrement is evaluated as

ith 1 .
exp e(Uw - Uj. - U)/TQ]

where v is the ion thermal velocity, U is the end-plate work
ith w

function, and U is the ionization potential of the neutrals. The

last term in Eq. (4.36) gives the probability that an ion is lost upon

striking the end-plate. The experimental damping rate is then compared

with the algebraic sum of the theoretical growth (damping) rate and the

end-plate damping decrement calculated from Eq. (4.36).

While Eq. (4.36) is plausible, and leads to values for w

which agree approximately with the discrepancy between measured and

calculated growth (decay) rates for the isothermal theory used by

Rowberg and Wong, the agreement is poor for the no n- isothermal theory,

as we shall see in Section 4.4.3. Furthermore, its derivation can be

criticized on several grounds. First, no account is taken of the spatial

dependence of wave energy along the machine; second, it is based on

collisionless concepts, and effectively distributes the damping uniformly

along the system. It is clear from the viewpoint developed in Section 2

that, within a fluid model, end-plate damping should be treated as a

local effect producing imperfect wave reflection (|P| < 1). Consequently,

the mode is a partial standing wave constructed from roots k~(io) with
± z

complex k , corresponding to spatial growth toward the ends. The
z

partial standing wave gives a flow of wave energy toward the ends, where

it is dissipated, and, because of the spatial growth, the temporal growth

rate is reduced.

Thus, end-plate damping is incompatible with the pure standing

wave (k~ real) assumed by Rowberg and Wong. If the observed mode was
Z

indeed a pure standing wave, then end-plate damping could not have been

responsible for the discrepancy in temporal growth rate. On the other
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hand, if end-plate damping was operative, then the mode could not have

been a pure standing wave.

4.4.2 Normal Mode Interpretation

The theory of Section 2 should allow one to determine, from

careful measurements of the axial mode pattern, the reflection

coefficients and thus the values of k~ and k~.. By solving the

dispersion relation for these k values, the temporal growth rate
z

which includes the effect of end-plate damping can be determined. One

can then establish experimentally to what extent the discrepancy in

temporal growth rates is attributable to end-plate damping.

For k we have taken the value measured by Rowberg and
zr

Wong. However, due to the facts that their measurements were only over

a 40 cm region of the 60 cm column, and that the wavelength was very

long, their data do not allow one to determine k . directly. The
zi

difficulty is illustrated in Fig. 4.13, where the theoretical amplitude

and phase of the axial normal mode are plotted with k = it/1.8L, L =

60 cm, and with the magnitude of the reflection coefficient,

|p| [= exp(-k .L)], taking on various values. The amplitude curves are
Z1

very similar over the measurement region for |p| > 0.3, and the phase

shifts are quite small. The measurement of this phase shift (~10 ) is

difficult since there is a very large azimuthal phase shift (720 for

the m = 2 mode); very precise tracking of the axial probe along a

magnetic field line is required for the measurement. It is thus not

surprising that Rowberg and Wong did not observe an axial phase shift

over their measurement region.

To obtain an estimate of the value of |p| in their

experiment, we use an argument based on energy considerations. The

probability that an ion is lost upon striking the end-plate for an ion-

rich sheath is given by

6 = [1 + exp e(U - U - U)/Tn]~-
1 , (4.37)

w x u

as in Eq. (4.36). If we assume that most of the wave energy is carried

by the ions, since the electrons have a much smaller mass, & also
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Fig. 4.13 Amplitude and phase of axial normal mode for various

magnitudes of the reflection coefficient p, with k = 1.67 cm
zr
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approximates the fraction of wave energy lost at the end-plate. In

terms of the reflection coefficient, the fraction of energy lost is

written as (1 - |p| ). Using this, and Eq. (4.37), gives the result

IP! -
1 + exp

exp e(U -U -U)/T
W I U (4.38)

For tungsten end-plates (U xa 4.5 eV), potassium atoms (U = 4.3 eV),

ion-rich sheaths (U = 0.5 eV), and T /e = 0.19 eV, this yields |p| «.0.4.
-2 -2

In terms of the wavenumber, we have k . « 1.5 X 10 cm , or, for the
zi

normalized wave number, K. « 30. These values should be regarded as

approximate, since we have attributed all of the damping to the ion

loss. Also, Eq. (4.38) is sensitive to the precise value of the work

function, U , which is dependent on the surface conditions and lattice
w

79
orientation of the end-plate.

4.4.3 Comparison with Measured Results

In their experiment, Rowberg and Wong measured the damping

rate of the drift waves as a function of the magnetic field. In Fig.

4.14, we have compared their experimental data with the solutions

obtained from the various approximations to the full dispersion relation,

as discussed in Sections 4.2 and 4.3. Note that -10. is plotted

vertically, so that curves above the axis correspond to instability. We

have taken k to be the value measured by Rowberg and Wong, and give
zr

solutions for decreasing values of |p| , corresponding to increasing

values of k ..
Zi

In Fig. 4.14(a), we show the isothermal theory results

neglecting ion axial motion [Eq. (4.26)], as used by Rowberg and Wong.

It is seen that reducing |p| reduces the growth rate and leads to

damping (see also Fig. 4.3), but it is clear that no single pi < 1

curve matches the experimental results. The |p| =0.3 curve matches

at low magnetic field, but has the wrong shape at high magnetic field.

On the other hand, Rowberg and Wong's procedure of subtracting a constant
— 3 — 1

damping decrement of to RS 1.4 X 10 sec from the theoretical curve

for real k__(|pl =1) does le_ad to>_ a. reaspnable jia/tch wjLth..the experiment
- — — - - - - — ̂j
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However, in the experiment, \ is sufficiently small that the effect of
z

ion axial motion is important, especially at higher magnetic fields, so

we should not expect agreement with a theory neglecting ion axial motion.

Thus, the apparent agreement found by Rowberg and Wong must be regarded

as fortuitous.

In Fig. 4.14(b), we show the isothermal results including

ion axial motion [Eq. (4.32)]. As we saw in Section 4.2.2 (Fig. 4.5),

the growth rates are decreased, but more importantly the damping rates

reach a minimum (-co. a maximum) and then decrease as the magnetic field

is increased. This is just the behavior observed experimentally, and

the curve for |p| = 0.5 fits the data very well. On the other hand,

Rowberg and Wong's method of subtracting a damping decrement, <jJ.n> leads

to a poorer fit than before. While the agreement is quite good at this

point, we shall also consider the full non-isothermal theory [Eq. (4.24)].

The non-isothermal results are shown in Fig. 4.l4(c), and,

for |p| =1 (k real), there is a dramatic increase in the growth rate
Z

(see also Fig. 4.6) to nearly three times that of the isothermal theory.

Subtracting the damping decrement, to , still leads to a poor fit, but

this time the error is in the opposite direction to that of Fig. 4.14(b).

However, the solutions for |p| < 1 continue to fit the data quite well,

this time for |p| ̂  0.45. This is close to the estimated value of

|p| « 0.4 found in the previous subsection.

We have thus shown the importance of including both ion

axial motion and non-isothermal effects in interpreting the experimental

data, and that the proper interpretation of these results requires solving

the dispersion relation for both complex co and complex k , as
z

described in Section 2.
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5. WAVES PROPAGATING PARALLEL TO THE MAGNETIC FIELD

As mentioned in Section 4.2.2, when the angle of propagation of

low-frequency waves becomes more nearly parallel to the magnetic field,

ion motion along the field becomes important, and two branches of the

dispersion relation evolve into ion-acoustic wave branches. These waves

are similar to sound waves in a neutral gas, except that there are

electrostatic forces present. These forces cause the waves to be driven

by a combination of the electron and ion pressures, while the inertia is

due to the ions. It has been known since the early 1960's that these

waves can become unstable due to electron drift in a collisionless

plasma. The resonant interaction between the drifting electrons

and the wave overcomes Landau damping by the ions to produce instability.

The energy for the instability comes from the kinetic energy of the

drifting electrons. Later, it was shown that electron drift can also
46

produce ion-acoustic instability in both weakly ionized and fully
8

ionized collisional plasmas, where electron collisional effects cause

the release of the kinetic energy.

In this section, we consider ion-acoustic waves propagating parallel

to the magnetic field. We again take the case of a fully ionized

collisional plasma. The basic dispersion relation for these waves is

derived in Section 5.1, where we can use the Fourier transform since the

plasma is assumed uniform. In Section 5.2, the dispersion relation is

solved to find the characteristics of the ion-acoustic instability. The

effect of an electron drift (or a current) is studied, and, in addition,

it is shown that a temperature difference between the electrons and ions

with T n >T can produce instability with no electron drift. This
O 0

latter case is a new result, and the energy for the instability is due

to the lack of thermal equilibrium between the electrons and ions. We

also consider the effect of axial boundaries on the solutions. These

studies apply to a plasma whose steady state is maintained by some

external heat sources and sinks. In Section 5.3, we consider the

instability in a plasma whose "steady state" changes in time from some

given initial conditions. We conclude in Section 5.4 with a discussion

of situations in which ion-acoustic instability might arise.
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5.1 Basic Theory: The Maintained Plasma

5.1.1 Steady State Plasma

The model, shown in Fig. 5.1, is of a uniform, fully ionized

plasma immersed in a uniform magnetic field in the z-direction. There

also may be an electric field, E , along the magnetic field. The

magnetic field is included for comparison with the models of Sections 3

and 4. However, no terms due to the magnetic field will appear in the

equations to follow, since we are considering quasistatic waves

propagating parallel to this field. Thus, the results are equally valid

for an unmagnetlzed plasma. The ions and electrons are allowed to have

different temperatures, given by T. and T , respectively. This is
iu GU

physically justifiable because the electrons and the ions each equilibrate
58

with themselves much more quickly than with one another.

Fig. 5.1 Model of the plasma in rectangular geometry

showing the DC quantities and the direction of

propagation.

58
We again use the moment equations to describe the plasma.

All subscripts z are omitted, since this is the only direction in which

variations are considered. In this section, the three moment equations

are used for both the electrons aî _J:.hê .ons-.--s-i-nee--heat-̂ f-Iaw~'aTo'TIg~ffie
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magnetic field may be important for each species. For the ions, the

equations of continuity, momentum transfer, and heat transfer are

o

dv. o(nT.) . nT. o y. OT
m.n —-i = a + ̂  €.„ —— i + ZenE + m C v .nu + C n s6 ,
i dt oz 3 ill V. . ^ 2 e r ei t oz11 oz . -

(5.2)

dT. ov. a /Ĉ .nT, 9T \ m
+ 3 — V .n(T - T.) + S. .j m. ei e i i

(5.3)

n _ + n T . __ + . 3 _ e v .n(T - T . ) + S .
2 dt i oz Oz \ m . V . . dz / m. ei e i i

Here C. = 0.96 is the ion viscosity coefficient, C = 0.51 is the

resistivity coefficient, C = 0.71 is the thermal force coefficient,

C. = 3 . 9 is the ion thermal conductivity coefficient, Ze is the

charge of an ion, u = v -v , and S is a uniform external heat source
e i i

or sink term which balances the heat equation in the steady state when

T .. ^ T.^. From this point on, the word "source" will imply source or
eO lO
sink. We assume that the zero order ion velocity, v , is zero, even

in the presence of an electric field E_. As discussed in Section 4,

this is a good approximation since the ion mass is much larger than that

of the electrons.

The equations for the electrons are very similar, except that

we neglect electron inertia, as previously. We thus have the continuity,

momentum transfer, and heat transfer equations:.

o

9 (nT ) . nT 3 v dT
0 = -- ^- + -z C — -• - 1 - enE - m C V nu - C n -5^ , (5.5)

o z S e r i v - , 2 e r e i t o z
ei oz

dT . dv -s /C nT OT \ ^ m_ "I UV ^ 1 ^ , 1 1 1 ^ > 1 \ -N

3 e . . ' e 9 / eV e e\ _ _ o
^ n —^ + nT -^f=T- ^, -^ - C+T (̂nu) - 3 -Z V .n(T -T. )2 dt e ot oz \ m V . oz/ t e oz m ei e i\ e ei / i .

2
+ m C V .nu + S . (5.6)e r ei e.
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Here C = 0.73 is the electron viscosity coefficient, C is the
er] ex

electron thermal conducitivity coefficient, and S is the uniform
e

external heat source term which balances the heat equation for the

electrons in the steady state.

The zero order electron velocity comes from Eq. (5.5) when

we take v = 0, and is given as [see also Eq. (4.10)]

6 Eo
e r ei

We thus have a steady state plasma in which the ions are at

rest and the electrons are drifting at a speed v . The electrons and
eO

ions may be maintained at different temperatures by the source terms S.

and S . In many plasmas, it is found that the electrons have a higher

temperature than the ions. This may be caused by heating of the electrons

by an external source (RF heating, DC joule heating, etc.) and by the

cooling of ions (occasional collisions with neutrals, for example). We

do not specify the source terms S and S , but assume that they
i e

maintain the plasma in this steady state. The initial value problem for

the case S. = S =0, when the plasma is allowed to equilibrate
i e

(T _ T._.) from some initial state, is studied in Section 5.3. First,
eO 10

however, we consider the stability of a maintained plasma for waves

propagating along the magnetic field.

5.1.2 Perturbed Plasma

Since the model is of an infinite, uniform plasma, we may

take the variables n, E, v , v., T , and T. to have the general form

n(z) = n + n exp i(ut - kz) . (5.8)

The same assumptions are made as in Sections 3 and 4, i.e., the waves

are quasistatic (E = -90 dz) and low frequency (10 « u> .), the

latter implying that quasineutrality (n , = Zn = n, ) can be used. It
el il 1

is also assumed that sources S. and S are not important in the
i e

perturbation analysis, i . e . , S . n = S , = 0 . The effect of this
il el

assumption is discussed in Section 5.2.1.
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In beginning the analysis, a simplification arises if

several of the perturbed electron and ion equations are considered

together. The continuity equations [Eqs. (5.1) and (5.4)] are used to

find the first order velocity variables . .. . .

el

Next we add the momentum transfer equations [Eqs. (5.2) and (5.5)], so

that the electric field and collisional terms cancel. Using Eq. (5.9),

we eliminate v , and v from this equation to give
el il

TT + Y
0

12 TlO 13

The Y's which relate these first order variables are

11 3 R
m

CeriZ /

m

' H V \

^ " <V

(Z+RT) ;
+ R2 K

m -

(5.11)

12

m
13

ra

l:2
Here fi = w/V . is the no:rmalized frequency,, K = k(T /m ) /

' '
.

'G 1
v . =

is the normalized wavenumber, \ being the electron mean free path,
2 / 6 /R s m./m is the mass ratio, R = T /T is the temperature ratio.,

and V = v ft/(T 0/in.) is the normalized drift velocity of the
'G w G VJ 1

electrons.

In perturbing the ion heat transfer equation '[Eq. (5.3)], we

find a second equation

Y21 +

0 eO
= 0 (5 .12)
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The new y'8 which appear in this equation can be written as

'21

6Z(1-RT)

ra T

5/2 2
„ H

'22
R Zm

3Z

m
23 2 _2

. (5.13)

Similarly, the electron heat transfer equation [Eq. (5.6)]

can be perturbed, which yields a third equation,

n T T
V — + Y — + Y -2ir31 n- 32 T 33 T .

0 lO eO
= 0 (5.14)

This last set of v's has the form given by

m

-3R

32
T
2 '
I
m

'33
3 V

Rm

3
2

m

(5.15)

Equations (5.10), (5.12), and (5.14) provide the three,

equations for the wave variables n , T , and T . We find the
1 il el

dispersion relation by setting the determinant of the coefficients of

these equations equal to zero. The dispersion relation is thus

11

21

'31

12

22

'32

Y13

'23

'33

= 0 (5.16)
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For V = 0, D(̂ ,H) is of fourth order in Q and of sixth order in K;

for V r 0, it is of seventh order in K.. The extra H. factor in

V r 0 comes from including electron viscosity, as seen in Y,, • Of

the roots in Q, two correspond to electron and ion entropy (or

temperature waves), and two correspond to ion-acoustic waves. It should

be noted that if 0 is a solution to the dispersion relation for K ,
Tk ĉ

then -Q is a solution for -H . Thus, we only need to consider

solutions for Q > 0 or for K > 0. The stability and characteristics

of these waves are studied in the next subsection.

In order to study these characteristics, we first give the

relation for the perturbed potential, since it cancelled out of the

equations when the momentum transfer equations were added. Using Eqs.

(5.5) and (5.9), we find

T
'• m

5.2 Solutions to the Dispersion Relation

5.2.1 Effect of Unequal Electron and Ion Temperatures

We consider solutions to the dispersion relation for V = 0,

so that D(0,H) is even in K. The entropy waves are always damped

(Q. > 0), so we shall not be concerned with them. For the ion-acoustic

waves, we find that instability can arise if the electrons have a higher

temperature than the ions. The relevant branch point of the dispersion

relation, as defined in Section 2.1.2, occurs on the real Q-axis at

n =0, H. = 0 . (5.18)
s s

Thus, if the waves are unstable, the system is on the boundary between

convective and absolute instability.

A very convenient approximation can be made to the ion-

acoustic wave dispersion relation by assuming that for these waves

O/K ~ ± 1/R , i.e., w/k ~ ± C . If we then restrict ourselves to R < 1
m s T
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2 -2
and short wavelengths with K » R , a large number of terms in

m
Eq. (5.16) may be neglected as small, leading to the cubic equation

D
5/2 2

rr -
" 3/2
I (2 C_ +

2 1

m m -1

Z + 5RT/3

m

Q
CiX

(Z 2Z(Z + 2 - RT>

Z2R3

m

= 0.

m

(5.19)

We now assume the ion-acoustic wave solution has the form

= n + in.,r i
(5.20)

where Q ~ ± K/R and |Q | « |Q.| . Neglecting small terms, the
r m r i

real part of Eq. (5.17) then gives

} (Z + 5R /3)'
r _,. T

(5.21)
Rm

which can also be written as

o / ZT „ + 5T /3r , / eO lO
m.

(5.22)

Using this result, the imaginary part of Eq. (5.19) yields the growth

(damping) rate

n•
3/2 R

m

2 2 Z 2 2

m

3/2

m m eX

2Z(1-4R
(5.23)
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For acoustic waves in a neutral gas, the dispersion relation

generally has the form

* (5 24)
.' (5 '

where Y is a constant obtained from the equation of state of the gas.

For an isothermal process Y = 1, while for an adiabatic process

Y = 5/3. By analogy, the phase velocity of the ion-acoustic wave

[Eq. (5.22)] implies that the electrons behave isothermally and the ions

behave adiabatically. This suggests that we may take C. =0 and
-̂\

C = °°, i.e., there is zero ion heat conductivity and infinite electron
e\

heat conductivity. However, while this appears true for the real

frequency, we see from Eq. (5.21) that the growth (damping) rate of the

wave depends on the precise values of C and C •
1\ GX

In Eq. (5.21), the terms are, respectively, the contributions

of ion viscosity, electron viscosity, ion thermal conductivity, electron

thermal conductivity, and collisional energy transfer. The first four

terms are all stabilizing, but the last is destabilizing for R < 3/4,

i.e., for T . > (4/3)T... Note that of the stabilizing terms, the
eu lU

fourth term has its coefficient C in the denominator, and thus

decreases for increasing electron heat conductivity. The ion terms tend

to zero as T.^ -» 0 and are proportional to R , while the electron
10 m _2

and collisional energy transfer terms, being proportional to R , are
m 2

smaller by a factor R . The first three terms contain a factor v. , so

that the last two terms, which do not, dominate for long wavelengths.

It is clear that for long wavelengths, and R small enough, the

destabilizing effect of the collisional energy transfer can overcome

the stabilizing effects.

Figure 5.2 shows the real t contour mapped into the Q-plane
2

for the ion-acoustic wave root for R = 1837, corresponding to hydrogen,
m

and for various temperature ratios R . These results were computed from

the full dispersion relation, and agree very well (<5%) with the

approximations given by Eqs. (5.21) and (5.23) in their range of

validity. The map is symmetric about H . Except when R ~ 1/10,
***"

instability is confined to the region 0 < |H| ~ 1, under which conditions

138



0.4

0.2
CM
O

-0.2

r=±0.4

/c=±0.9

K=±

/c=±0

1.0 2.0 3.0
r x I0

2

Fig. 5.2 Map of the real K contour into the Q-plane via Eq. (5.16)

for the ion-acoustic wave branch with various temperature ratios,

R , and R = 1837, corresponding to a hydrogen plasma.
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the fluid treatment is valid. From Eq. (5.23), one finds instability

for:

2 3Z3 2(l-4RT/3) - (Z+5RT/3)/2

The maximum growth rate occurs for R « 1, and is of order (-10. ) ~

(m /m )V . This is comparable with the characteristic rate of energy
e i ei

transfer by collisions between electrons and ions. Although this growth

rate may appear small, it can be as large as for other instabilities in a

plasma discharge, as we shall discuss in Section 5.4.

For systems which are effectively unbounded, it is

appropriate to solve for the spatial growth rates of these waves. Since

the dispersion relation is nearly satisfied for real (̂ ,H) in some

vicinity, say (Q , H. ), we have solutions to the dispersion relation

D(^ +iQ , X, ) = D(Q , H +K ) = 0, where |fl A? 1 « 1, U A I « 1.
r i r r r i ' i' r i r

From this we may find the spatial growth rate for real ft, i.e.,

-Q
H. =

i R 0.
= T

(Z+5RT/3)
1/2

(5.26)

Here we use the 0. from Eq. (5.23), and the ± sign for propagation

parallel/antiparallel to the magnetic field. Thus, there is spatial

growth for Q. < 0, and the real frequency is still given by Eq. (5.21).

In order to clarify the characteristics of this instability,

we have calculated the amplitude and phase of the normalized first order

variable, = (e^ ' T = ( T / T A n ) , and

T. = (T. ,/T. r>)/(n,/n̂ ) . These are shown in Fig. 5.3 as a function of
iln il 10 10

H for R = 1/2 and 1/10 (note the different scales) . Expressions

for these quantities may be determined from the first order equations,

i.e., Eqs. (5.10), (5.12), and (5.17). The potential and density

oscillations are nearly equal, as would be true for a collisionless,

isothermal electron gas. Here the potential oscillation leads slightly
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Fig. 5.3(a) Values of amplitude of the normalized variables 0, . T , ,
In eln

and T... for the conditions in Fig. 5.2 with R = 1/2, 1/10.
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in phase, contrary to the drift wave in Section 4. The relative electron

temperature oscillation is very small, as one might expect since the
o

electrons behave nearly isothermally, and the phase is positive at ~60 .

Neither of these variables is much affected by variations in R . The

relative ion temperature oscillation, on the other hand, is dependent on

R ; the amplitude is quite large and increases as R decreases, while

the phase is negative for instability, but becomes positive when the

plasma is stable. Thus, the characteristics of the ion temperature

oscillation are the most noticeably affected by the presence of the

instability.

Finally, we consider the effect of the assumption that the

heat source terms S and S are not perturbed for the first order
i e

equations. For example, if we had assumed instead that these terms were

proportional to the number density, n, the only change in the Y's in

Section 5.1.2 would be that the factor 6(1-R ) in •y [Eq. (5.13)]

and y [Eq. (5.15)] becomes 3(1-R ). This affects the growth rate,
»3 JL i.

in that the last term in Eq. (5.23) now becomes

(1-5R
- Z

R̂ (Z+5RT/3)

and the maximum growth is decreased to about half. However, the plasma

can still be unstable, and the general characteristics described above

are valid. Of course, to treat a specific problem rigorously, one would

have to determine the explicit form of S. and S by considering the
i e

physical processes which occur in the experiment being modeled. We have

shown two general cases when instability can arise.

5.2.2 Effect of an Electron Drift

We now consider the stability of the ion-acoustic waves inr / / *ithe presence of an electron drift V = v ../(T /m )" \. The approximation
I eO eO e J

technique used in the last subsection to obtain the solution to the
2 2

dispersion relation for K R » 1 and R < 1 is used again here

[see Eq. (5.19)]. We find that the real frequency, Q , is still given

by Eq. (5.21), and that the growth (damping) rate is now
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:m

/
,Z R (Z*5R /3) 2R C \ r m/ R (Z+5R /3)

m T m e\ m T

(5.27)

The drift manifests Itself in the electron viscosity and thermal

conductivity terms, and is destabilizing for x.V/(Q :R ) >'0, i.e., for

the wave with phase velocity In the sense of v .
eO :

Turning back for a moment to Section 4.3.3., 1st will be

recalled that the drift waves were destabilized by an electron .axial

drift when the drift velocity exceeded the )axial phase velocity ;of the

wave. This effect aro.se when the electron heat transfer equation was

included to account for finite .heat flow along the magnetic field. The

manner in which nonzero electron thermal conductivity can give rise to

instability when an electron drift :is present :ls 11lustrated .in Eq. ('5..':

Although this equation applies to ion-acoustic waves,, we saw in 'Section

4.'2.2 that the 'drift wave branch evolves into the Ion-,acoustlc branch as

the propagation becomes more nearly parallel to the magnetic .field. Thus,

we expect the effect <of electron Adrift to ibe .similar for. each, .as our

-calculations bear out.. It .should be mentioned that the effect of electron

drift on drift waves is more Involved than that Implied -by Eq. (S..27), in

that the dispersion curves for V .nonzero ;are -not Asymmetrically displaced

•about the V = 0 curves (.see !Flg. 4 .'9.) . This difference between the

drift waves and the Ion-acoustic waves will :also ^appear when we consider

the normal mode -solutions,.

.For the .ion-acoustic waves,, we .may suse Eq,. 05 ..2,7;) to f.lnd

the drift velocity required .f>or instability. This ;glves

i

R̂ /3;) C1T1 a-BjjSG. î :3̂ -.6Z
i il-̂ ^F ' ̂K<r ' iL-tẑ K̂ aj.c.̂ aâ G.̂ yaiiK-.er3-

:> 1 ••+.

;(5.28)



If we neglect electron viscosity (last term in denominator), and

collisional energy exchange (last term in numerator), Eq. (5.28) reduces

to Eq. (53) of Reference 8, apart from notation. It is clear that the

threshold velocity is sensitive to the inclusion of the collisional

energy exchange, and, as was shown in Section 5.2.1, may be zero,

corresponding to instability driven purely by a temperature difference

with T >T . Because of this, the threshold velocity calculated
8

by Coppi and Mazzucato may be quite inaccurate when T > T .

Figure 5.4 shows the real K contour mapped into the

Q-plane, without drift and with a drift of V = 4, for the case of
2 , ,

hydrogen (R = 1837) with R = 1/2 and 1/10. These results were

computed from the full dispersion relation, although approximations

given by Eqs. (5.21) and (5.27) give accurate results for their range

of validity. It is seen that drift destabilizes the wave with phase

velocity in the sense of the drift, and stabilizes the wave with phase

velocity in the opposite sense. For the case R = 1/10, the drift of

V = 4 roughly doubles the maximum growth rate predicted in the absence

of drift. The spatial growth rate can be found by using Eqs. (5.26)

and (5.27).

The amplitudes and phases of the normalized first order

variables 0, , T ., , and T., corresponding to these solutions are
In eln iln

shown in Fig. 5.5. We have omitted some of the curves for R = 1/2

when they nearly coincide with the curves for R = 1/10. Comparing

these curves with those for V = 0, i.e., Fig. 5.3, we see that the

amplitudes of 0 and T are only slightly affected by the drift,

while that of T increases by a factor of ~2 for K > 0, and ~4

for H < 0. Thus, as for the drift waves in Section 4.3.3, the electron

drift increases the relative amplitude of the electron temperature

oscillations. For the phases, both 0 and T have roughly
In eln

opposite phase shifts depending on whether H > 0 or K < 0, with

H > 0 corresponding to the negative phase shift. On the other hand,

for either K < 0, the phase of T.n is nearly the same as when V = 0.
iln

Thus, while the behavior of T is dependent on R but not on V,

the reverse is true for 0 and T
In eln
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Fig. 5.4 Map of the real v. contour into the Q-plane via Eq. (5.16) for

the ion-acoustic wave brach with the parameters as in Fig. 5.2.

' VeO = 4<TeO/V*; —-' VeO = °"
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iln i
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5.2.3 Normal Mode Solutions

In order to describe the behavior of these ion-acoustic

waves in an axially bounded system, we must solve the dispersion

relation for complex fi and complex K, as discussed in Section 2.

First, we consider the V = 0 case. Contours of constant (*t - K )

and constant (K. - K.) are mapped in the H-plane, where increasing

values of (H. - *•.) correspond to solutions for increasingly lossy

reflections [see Eq. (2.28)]. The + or - superscript refers to waves

propagating in the direction of increasing or decreasing z, respectively.

This map is shown in Fig. 5.6 for R = 1/10, where the vertical scale

is expanded by a factor of two over Figs. 5.2 and 5.4. We see that all

the normal modes may be stabilized by increasing the reflection loss at

the boundaries.

In performing this mapping for the case when an electron

drift of V = 4 is present, we find that the effect of the electron

drift appears to cancel out of the normal mode solutions. That is, the

curve for (K. - K.) = 0, which corresponds to lossless reflections,

and R = 1/10, is the same as the curve for V = 0 and R = 1/10

shown in Fig. 5.6. In fact, the whole mapping is the same as found for

the V = 0 case. This is due to the normal mode being made up of a wave

propagating in each direction, one of which is amplified by the electron

drift, while the other is damped by the same amount. This can be seen

from Eq. (5.26) used in conjunction with Fig. 5.4. The effect of a

temperature difference, on the other hand, is to amplify each wave; thus

the temperature difference can contribute to the temporal growth rates

of the normal modes.

The fact that the destabilization due to the electron drift

disappears for the normal modes of an axially bounded system underscores

the potential importance of the instability due to a temperature

difference. For example, in a plasma which has an axial electric field

applied (i.e., a DC current present), the electrons will heat up due to

joule heating. The current driven ion-acoustic instability cannot

contribute to the temporal growth rate of the normal modes because of the

restrictions mentioned above, but instability will occur for the normal

modes if the temperature ratio, R , becomes small enough. In this
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connection, it should be noted that the wave propagating in the direction

of the electron drift can exhibit spatial growth, so that there can be

an enhancement of noise level along the system in the direction of this

drift.

On the other hand, for toroidal systems, such as the
8

stellarators considered by Coppi and Mazzucato, periodic boundary

conditions apply, and the normal modes consist of separate ion-acoustic

waves propagating in either direction. In this case, the electron

drift can have an effect on the stability of the normal modes as studied

in Section 5.2.2.

5.3 Initial Value Problem: The Equilibrating Plasma

5.3.1 Steady State Plasma

In this subsection, we consider a plasma for which there

are no external heat sources, so that S = S =0. We take the system
i e

to have prescribed electron and ion temperatures at time t = 0. As

before, we include the effect of an axial electric field which gives

rise to the electron drift in Eq. (5.7) and also to joule heating of the

electrons. We then allow the zero order temperatures to change in time

as described by solutions to the heat transfer equations, i.e., Eqs.

(5.3) and (5.6). These equations yield

T CV V T V ( l - R )
2 r ei 2 _ _ei ^iO _ ei U V

V ' ' ~T ~ •* 9 9 T' ' T ~ 9 n ' *TeO 3 R2 R2 T TiO R2 RT
m m m

where the dot denotes time differentiation. In order to obtain simple

analytic solutions to these equations, we assume v n = constant, and
2

normalize the time variable to T = 2V . t/R . This yields the solutions
ei ' m

T (0) T-n(0)
TeQ(T) = — - [1 + exp(-2T)] + — - - [l - exp(-2T)]

C V2(0) T (0)
+ - ~ ~ - [1 + 2T - exp(-2.T)] ,
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T (0)
TiQ(T) = [1 + exp(-2T)] +

T (0)
[i - exp(-2T)]

CrV(0)Te0(0)

12 "~
[1 - 2T- exp(-2r)] . (5.30)

In Fig. 5.7, we show these solutions for T _(0)/T (0) = 10, when

V = 0 and V(0) = 3. For the V = 0 case, the temperatures relax to a

common value of [T Q(°) + T (0)]/2 in a time T ss 2. When V(0) = 3,

the relaxation is slower, and both the electron and ion temperatures
' ' 2

eventually increase due to joule heating of the electrons [the V terms

in Eq. (5.30)].

10

10

Fig. 5.7 Relaxation of electron and ion temperatures given by

Eq. (5.30). , V = 0 ; , V(0) = 3 .

5.3.2 Perturbed Plasma

In perturbing the-basic equations to first order, we assume

the variables n, E, v , v., T , and T have the form
e i e a
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n(z,t) = n + n (t) exp(-ikz) , (5.31)

where T n and T are now functions of time. We make all the other
eO iO

assumptions quoted in Section 5.1.2, and use the same approach to

derive the first order equations. By using the continuity equations

[Eqs. (5.1) and (5.4)], we eliminate the velocity variables from the

combined momentum transfer equations [Eqs. (5.2) and (5.5)]. This

yields

1 "l 4 H

Rm

v2. no 3 R
ei

-'3<Wr*m

H2

Rm

, /

i

V/a,- R5/2 r 7_/ . «— "— , *-' "

^ ' RZ m

2ni V Ti
nO ' R2 Ti

m

1 \
\

ei nO

2 T .1 TV- el
0 np

0 R LeO
m

= 0

(5.32)

The first order ion heat transfer equation [Eq. (5.3)] gives a second

equation

1 Ax 3Z(1-RT) n^

_ Vei nO R2 RT
 noj '

3

r ' /' / K '
3 1 Til / CiX

 RT

2 V e i T i O V R Z 2

!- x m

TT P!i e j . _ _ n

' 2 „ ^2 T rt " '

Z \T 13Z Til
' 2 JT

R
m/ i0_

(5.33

vT m
eO

Finally, the first order electron heat transfer equation [Eq. (5.6)] is

3 1
2V . T nei eO

ei 0

el
+ I - i -z

2 \
•V r 3 \ 1
lm R R T / nO

m m / _

2r v M -'
3 r ? 2 3 U '
2 2 + CeX t 2 ;

m r

T il

\ TiO

3R
TA Tel

2 T n/ eO
n /

= 0

(5.34)
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If we assumed a time dependence of exp iiot, these equations would be

very similar to Eqs. (5.10), (5.12), and (5.14) found in Section 5.1.2.

However, we leave the time dependence unspecified for now, and find
2-2 i . / i /

that, under the assumptions K »R and |n /n V . | ~ H/R , Eqs.

(5.32) - (5.34) may be reduced to the single third order differential

equation

n . H n
+r n = 0 . (5.35)

3 ^0 2 T * 1 V . T 2 1V . V . eiei ei

The coefficients of this equation are given by

r ' , 4 ZW , s52 ci » 2 V
° ~ C R 2 5 H2 3 \ 3 A

eX m m m

m eX m m

2 CrH2v2 /23/2 ^Y^ 5/2 2 \ K2 2H2(1-R )

! Z -H- + V -T^ V + ~2 } ~23 R4 V 3 Z2R T R2/ R2 Rm m m m m

(5.36)

Equation (5.35) is the counterpart of Eq. (5.19) for the maintained plasma.

5.3.3 Almost Time-harmonic Solutions

In order to solve Eq. (5.35), we assume that.the time

variation of the perturbed quantities is almost harmonic, and can be
81

written as

n (t) = n exp i codt , (5.37)

where | to | » | to. | , Lto/u)| . We then may expand the derivatives in Eq.

(5.35) to find an approximation to 0 = uj /V . and Q = w /V .
r r' ei i i' ei
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2 2
recalling that we have assumed H R » 1, R < 1. This yields an Q

which is the same as was found for the maintained plasma [see Eq. (5.21)]

!_

Q (Z + 5R /3)2

_i = + - i - . (5.38)
H R

m

For the growth (damping) rate, we obtain

00 5/2 ,

m m

q/o n / \ R
R T 2 Z / H V \ 2 K T

9 Z2R ( Z + 5 R / 3 ) 1X 2R2C V * 3 R2(Z+5R /3 )
m T m e\ m T

(5.39)

Here H. is nearly the same as in Eq. (5.27) for a maintained plasma,

except that the last term, due to collisional energy transfer, is now

always positive. Thus, no instability can arise due only to an initial

temperature difference in an equilibrating plasma, and one cannot expect

an enhancement of the collisional equilibration by ion-acoustic waves.

This conclusion is also reached in a similar analysis given recently by
82

Kaw and Sundaram. On the other hand, an electron drift can still

produce instability, but, for moderate drifts, it will be quenched by

the rise of the ion temperature in a time less than an e- folding period.

For example, with an initial drift of V = 3, and R = 1/10, as in

Fig. 5.7, the initial maximum growth rate is

v .
io « - -|i . (5.40)
1 R2

m

At this value, the wave would e-fold in a time T ̂  2 . However, as can

be seen from Fig. 5.7, the ratio R has already increased to 1/2 at

T s« 1; this is sufficient to quench the instability. This approach

becomes less certain for larger drifts, since the zero order quantities

change quite rapidly [see Eq. (5.30)]. Also, as the electron temperature

increases, the electron mi

becomes less collisional.

o
increases, the electron mean free path increases as T n, and the plasmaeO
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5.4 Applications

To determine the importance of ion-acoustic instability for

physical systems, one needs to compare its growth rate with that of

other instabilities which might be present. For laboratory magneto-

plasmas, there is usually a density gradient perpendicular to the

magnetic field, so that drift waves can be unstable. The maximum growth

rate for the drift wave is ~ mio /3, where uj is the electron
De De

diamagnetic frequency, and m is the azimuthal mode number. 'This

maximum growth rate is valid-for T ^ T ^. Since the ion-acoustic

instability can occur due to a temperature difference for T < T ,

it is useful to compare the numerical values of the growth rates for

realistic parameters. The diamagnetic frequency and the collision

frequency V . are both independent of mass, while the ion-acoustic

growth rate is inversely proportional to mass. With this in mind, we

consider a hydrogen plasma which has the same electron diamagnetic

frequency arid collision frequency as in the Q-machine experiment

studied in Section-4.4 (for the 'm-= 2 mode as in Fig. 4.3). This gives
3

a maximum 'drift wave growth-rate 'for the m = 2 mode of -u). — 5 X 10
-1 x

sec , while the ion-acoustic instability -would have a maximum growth
4 -1

rate of -to. ~ 1 X 10 sec -for the same collision frequency and

T „ « T „. Higher order azimuthal modes for the drift wave have
lO eO

higher upper limits on the growth rate due to the dependence on m, .but

they are also more strongly damped by ion collisional viscosity. -In

any event, it is clear that the ion-acoustic waves can have growth

rates comparable to or larger than those for drift waves.

Another important point is that the drift waves are stabilized by

even moderate wavelengths (see~Fig. :4.5), while the ion-acoustic waves

can be unstable for shorter wavelengths, of the order of the electron

mean free path. Thus, in short collisional plasmas, the drift waves

can be stabilized or have their growth rates greatly reduced by the

normal mode requirement of-short axial"wavelengths, while the ion-

acoustic growth rate is relatively unaffected.
46

Since ion-acoustic waves also appear in weakly ionized.plasmas,

it is of interest to determine if the two-temperature instability might

occur there. The presence of neutrals is introduced by adding a
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collision term -nm V v to the right hand side of the ion
i in i

momentum transfer equation, i.e., Eq. (5.2). Here V is the ion-
in

neutral momentum transfer collision frequency. We neglect electron-

neutral collisions, since in adding the electron and ion momentum

transfer equations in the absence of drift, the term proportional to

V is smaller than the V. in terms by a factor R . This is due
e n m m .

/ 46

to the relation V /v. ~ R which holds for a number of gases.
en in m

The effect of ion-neutral collisions is to add the term v. /2V . to
in ei

the expression for the growth rate, i.e., Eq. (5.23). This corresponds

to damping. Thus, for the ion-acoustic wave to be unstable due to a

temperature difference in a plasma with neutrals present, V. must be

smaller than the maximum growth rate of ~ V /R . However, for
ei m

typical weakly ionized plasmas such as the positive column, this

condition is not met, and, even though T « T , two-temperature

ion-acoustic instability should not occur.

For naturally occurring plasmas, there are several possible

situations in which ion-acoustic instability might arise. The daytime

ionosphere does have a sufficient temperature difference between the
83

ions and electrons to produce instability. However, further
84

investigation reveals there is enough neutral gas present to cause the

ion-neutral collisions to quench the instability.
13

In the case of the solar wind, Cuperman and Harten have shown

that the observed radial profiles of density and temperatures can only

be explained by the two-species fluid equations if one assumes a heat

transfer between electrons and protons some 30 times the collisional

value. Using the collisional value gives an ion temperature near the

earth which is lower than measured. It has been suggested that such an

enhanced heat transfer is due to turbulence in Alfven waves originating

at the sun. Another possibility which should be investigated is that

the solar wind is unstable to low-frequency ion-acoustic waves (for

T. < T )} and such turbulence accounts for the enhanced heat transfer.
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6. CONCLUSIONS

6.1 Review of the Research

The primary purpose of this work has been to study the characteristics

of low-frequency, quasistatic instabilities of a fully ionized plasma. A

moment equation description has been used for both the ions and the

electrons. Before these instabilities were studied, Section 2 was

devoted to developing a general method for interpreting the behavior of

waves in a bounded system from solutions of the dispersion relation for the

•waves in an infinite medium. This was an extension of the stability
19

analysis given by Briggs for an infinite system. The result is that

the dispersion relation, D(w,k) = 0, must be solved for complex k in

general, as determined by the reflection coefficients of the boundaries.

This approach gives a very useful technique for determining the normal

mode frequencies and corresponding wave profiles for bounded systems

which can be described by the moment equations. The response of such a

system to a steady forcing function source was also given.

In Sections 3 - 5 , the low-frequency instabilities have been studied

in detail. The equations describing the plasma were perturbed about zero

order solutions to determine the dispersion relations for the waves. The

dispersion relation given by Eq. (4.24) for rectangular geometry illustrates

the basic wave types considered. For reference, the branches of this

dispersion relation are plotted in Fig. 6.1, where the parameters are as

in Fig. 4.3. The normalized frequency, w, and axial wavenuraber, K, are

given by Eq. (4.27). In Section 3, the flute wave has been studied for

propagation perpendicular to the axial magnetic field (K = 0) in a

cylindrical plasma column. This wave is represented by branch II in

Fig. 6.1. A differential equation was derived to describe the wave,

which can be driven unstable by a radial electric field. When the

electric field was a linear function of radius, the column rotated

uniformly due to the JE X B drift. In this case, instability was due

to the centrifugal force on the ions in the presence of a radial density

gradient. We obtained an analytic expression for the eigenfrequency

which included the effect of the column being radially bounded. This
GO

led to a generalization of some numerical results found by Chen on the
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effect of the column being radially bounded. If the effect .of

centrifugal force were: included in the solutions shown in Fig. 6.1 by

including a gravitational force, branch I and branch II would couple

together for small K to produce one stable wave and one unstable wave.

These would correspond to the pair of eigenfrequencies given by Eq.

(3.35). For nonuniform rotation of the column, a numerical procedure

was used to solve the differential equation for the wave solutions.
0*7 *3g

The transition to a Kelvin-Helmholtz instability ' was illustrated

for a sharp rotational velocity shear. These numerical solutions also

gave the eigenfunctions of the waves. Finally, two instabilities in a

hollow cathode arc experiment were identified as being unstable flute

waves.

In Section 4, we have considered propagation at an angle to the

axial magnetic field (K ̂  0), and concentrated on the collisional

drift wave. This corresponds to branch I in Fig. 6.1 for small K

(< 100). The drift wave can be unstable due only to a density gradient.

A complete dispersion relation was derived in rectangular geometry, and

it included the effects of ion axial motion, electron heat flow, and a

zero order electron axial drift (a current). The solutions of the

dispersion relation were compared to those of other authors, who

neglected some of the effects included in Section 4. The relative

magnitudes and phases of the first order wave variables were calculated.
45

We also showed how the characteristics of the entropy wave (see Fig.

4.6) differ from those of the drift wave. The solutions to the

dispersion relation were interpreted in the manner prescribed in

Section 2 for axially bounded systems. This allowed us to correctly
47

explain the results of a drift wave experiment in a Q-machine. In

addition, we showed that a zero order electron drift can increase the

growth rates of the normal modes of the drift wave for a bounded system.

As the angle of propagation becomes more nearly parallel to the

magnetic field (K large), branches I and III in Fig. 6.1 become a pair

of ion-acoustic waves. The stability of these waves has been studied

in Section 5 for propagation parallel to the magnetic field. The ion-

acoustic waves can be driven unstable by an electron drift in a collisional

plasma if electron thermal conductivity is included, as shown by Coppi
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8
and Mazzucato. We have extended this result to show that inclusion

of collisional energy exchange between the electrons and ions can

significantly decrease the threshold velocity for instability when

T. < T . Additionally, we have shown that the collisional energy

transfer can cause instability in the absence of an electron drift.

The relative magnitudes and phases of the first order variables were

also given. Further, it was found that, for an axially bounded system,

the electron drift does not contribute to the temporal growth of the

normal modes. These results hold for a plasma which is maintained in

the steady state with T. < T . For the case of a plasma equilibrating
i e

in time (T. ~* T ), it was shown that the collisional ion-acoustic
i e

instability should not grow to a significant level.

6.2 Suggestions for Future Work

For the linear analysis of the waves we have considered, there

are several extensions which would be of interest. First, for

propagation at an angle to the magnetic field, the restriction LO « u> .
CI

could be relaxed. This would allow investigation of the region around

oj , where ion cyclotron waves can propagate, and would show the
ci
transition to such waves. Second, the ion-acoustic instability could

be treated for specific systems, such as the solar wind or a Q-machine

with a current, in which heat sink or source terms were identified. In

solving the zero order and first order equations, numerical procedures

would probably have to be used. It v/ould also be useful to determine

the effects on the ion-acoustic instability of propagation at an angle

to the magnetic field,and the presence of a radial density gradient.

There are several suggestions which can be made about the extension

to a nonlinear analysis of the instabilities studied. First, the

stability analysis of Section 2 for bounded systems shows that in general

the linear wave amplitude profile in a system will not be uniform in

space. Thus, nonlinear analyses which assume an infinite medium with

uniform wave amplitude must be viewed with caution; future nonlinear

analyses should attempt to determine the effect of a nonuniform wave
9

amplitude. Second, Horton and Varma have recently suggested that

small scale turbulence may cause "collisionless" plasmas to appear

collisional for waves, so that a moment equation description of

161



instabilities would be adequate. A more quantitative evaluation of

this effect would be helpful.
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Appendix A

RESPONSE OF A BOUNDED SYSTEM TO

AN ARBITRARILY POSITIONED SOURCE

We use the same model as in Section 2.2.1, except that now the source

has the form s(t,z) = fn(t) 6 (z-z ) . The medium is described by Eq. (2.9)

while the boundaries are described by Eq. (2.12). To evaluate the response,

we use the approach developed in Section 2.2.2, and model the reflected

waves by an infinite series of image sources. The resulting model is

shown in Fig. A.I. The image source values are still given by Eqs. (2.14)

and (2.15), but the source f is now located at nL + z (-1) . The
n 0

shaded area again denotes the reciprocal medium with dispersion relation

D(co,-k) = 0. The response of each source in this mixed medium can be

found by the procedure described in Section 2.2.2, and illustrated in

Fig. 2.7. This yields the result that any source f at z = nL + z (-1)
n 0

can be replaced by a source f at z = nL/2 + (l-A)z , which is subject

to the regular medium only. Here A = 1 if n is odd, and A = 0

otherwise. The f 's are given by

fn = exp - ik*(nL/2 - AzQ)U , (A.I)

where k~ is used for n < 0. Equation (A.I) is the generalization

of Eq. (2.19) for which z = 0. The total response in the bounded

region (-L/2 <. z < L/2) is obtained by using Eqs. (2.3) and (2.4) to

find the responses to all of the f sources, and adding the results.
n

This gives

l „ - ± _ _
( t , z ) = -r- ^ exp [-Ik (z-zn)]+ A(z) I/ exp[-im(a +ao)fexp iwt dw ,

2jt J k+ - k~ L J

(A.2)

± >
where k is used for z < z . The other quantities in Eq. (A.2) are
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( + ZQ) =F 9L + U,np , (A.3)

02 = (k
T - k )(| - ZQ) =F 92 + i£n|P2| , (A. 4)

and

A(z) = J (1+exp iai)exp[- ik (Z-ZQ)]+ (1+exp iQ̂ ) exp[- ik+(z-z0)][>

(A.5)

Note that these equations indeed reduce to Eqs. (2.20-2.23) for the

special case z = 0.

We now prove that the form of the asymptotic natural response is

independent of the source position, z . For the natural response, ^n^-

is taken to be an impulse function, so fn(w) =1 in Eq. (A.2). The

normal mode frequencies are defined by the relation

(A.6)

where n is an integer. This is the condition for branch points in the

integrand of Eq. (A.2) due to the reflected waves, and is the counterpart

to Eq. (2.25),where z = 0. However, from Eqs. (2.21), (2.22), (A.3)

and (A.4), we have

«! + °2 = °! + 52 '
 (A-7)

so Eqs. (2.25) and (A.6) are in fact identical. Thus, Eq. (2.28), which

gives the restrictions on (k - k ) for the normal modes, is independent

of z.., as is Eq. (2.29), which gives the normal mode frequencies, w .
0 n
In addition, we show that the axial profile of the asymptotic natural

response is independent of z . As in Eq. (2.27), the axial profile is

given by A(z). Using Eqs. (A.3) - (A.6), A(z) can be reduced to

A(z) = p||p1
 s exp i(<Z>-k+z) + JpJ* exp[-i(0+k"z) ] i , (A.8)

where 0 = njt/2 ± (9 -6 )/4. The constant P has the form
J. £
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r z,, i a
P = 2 exp (k+-k7) 7 + i(k++k ) -^ + inn cos -^ , (A.9)

1 1 1 4 ^ I £

and contains all of the z dependence, but is independent of z. Thus,

the axial dependence is given by the terms within the brackets of :

Eq- (A.8), and can be reduced directly to the profile given lay Eqs. (2.41)

and (2.42).
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Appendix B

ION VELOCITY DUE TO A RADIAL ELECTRIC FIELD

IN CYLINDRICAL GEOMETRY

In Section 3.1.1, we found the ion fluid velocity in the approxi-

mation that the rotation frequency v /r is much less than to .. We
\J C1

now consider the solution to the ion equation of motion for larger

electric fields; first from the fluid equation [Eq. (3.3)], for an

electric field which increases linearly with radius, so we may neglect

viscosity; and second, from the single particle equation of motion. We

neglect the density gradient as contributing only a small diamagnetic

drift for these larger fields; this allows a more direct comparison

between the methods. The second method will clarify the understanding

of the actual orbits of the ions.

With the electric field a linear function of radius, the radial

and azimuthal components of Eq. (3.3) become

(B.I)
\ A ^ ± i' 1 \ )

and
/ 9 v v v \
/ 6 8 r \

m v —3— + = - ev B , (B.2)
V r or r I r

*\ *\ •

respectively. Here _v. = v i + v«_ig , and we have dropped all the

subscripts i. The coordinate system is shown in Fig. 3.1. Equation

(B.2) can also be written as

V
r r + r = 0 , (B.3)

where u = eB/m is positive. Thus, we may have two solutions: either
C

v =0, or the terms in the bracket add to zero. We denote these by

Solution I and Solution II, respectively. Using Eq. (B.I), Solution I

becomes
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v = 0
r

co r
c

to rB
c

(B.4)

where we have required VA -* 0 for E -» 0. For Solution II, we

require vfl to remain finite as r -> 0, and find

VQ = ~

to r
c (B.5)

Since the velocities must be real, we use Solution I for 4E/(co rB) < 1,

and Solution II otherwise. We show the behavior of the velocity as a

function of the electric field strength in Fig. B.I. Also shown is

the small electric field approximation used in Section 3.1.1 [see Eq.

(3.8)]. This is obtained by expanding Eq. (B.4) to second order in E

for small 4E/co rB, to give
C

ve = VE i - (B.6)

where v= - E/B. Figure B.I shows the validity of this approximation,
E

if we restrict ourselves to rotation frequencies much less than co .
c

The asymmetry of the rotation velocity for v > 0 and v < 0 is due
E E

to the centrifugal force, as mentioned in Section 3.1.1, which always

acts outward, opposing or aiding the electric field force for v > 0
E

or v < 0, respectively. The behavior of the solutions near
E

v /w r = - 1/4, where the solutions change abruptly, becomes clear if we

consider the motion of a single particle.

The equations of motion for a charged particle in cylindrical

geometry with an axial magnetic field can be readily obtained using a

Hamiltonian method.
85

The canonical equation for angular momentum gives

= 0 (B.7)

where the dot denotes the time derivative. Assuming that the particle

starts from rest at some position r - a, Eq. (B.7) can be integrated to

give
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c 2 2
V = r6 = - (r - a ). (B.9)

The conservation of energy for the particle is written as

(B.10)

where the last term is the potential energy. Using Eqs . (B.9) and

(B.10), we find

/ _2\ / „ w2r2 f _2 1 \
(B.ll)

At the turning points of the orbit, the radial velocity, r, must be zero.

One such point is r = a, but for the orbit to be closed, we must have

a second zero; this occurs when the terms in the second bracket of Eq.

(B.ll) add to zero, i.e.,

E = 1-4 - (B.12)(u>crB/4)

The left-hand side of Eq. (B.12) is independent of r, since E °='r,. and

the right-hand side is always .smaller than 1. Thus, the condition for

a second turning point of the orbit cannot be satisfied if

co rB
E > -|— . CB.13)

This is just the condition for which we use Solution II Eq. (B.5) in the

fluid equation approach. Physically, this means that the particle orbits

are not closed, and since this occurs for a positive electric field, the
2 / 2

ions are accelerated outwards. As a /r becomes small compared to 1,

the angular frequency of the ion approaches - to /2 [see Eq. (B.9)],
• ̂

which is consistent with Eq. (B.5) for the fluid approach.

We have seen that the change from Solution I to Solution II in the

fluid equation approach occurs just when the ion orbits become unbounded,

and the radial guiding-center velocity becomes nonzero. Thus, even

though the two solutions join abruptly (see Fig. B.I), the fluid
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equation describes the motion of the particles qualitatively, even for

large electric fields. On the other hand, the fluid approach neglects

the large ion orbits for these large fields (when the electric field

effect dominates over thermal motion); they might be important for

determining the finite Larmor radius effects on plasma waves.

In solving the fluid equations, we have essentially assumed that

the plasma density is uniform by neglecting the diamagnetic drift term.

Upon closer examination, this presents some difficulties for Solution

II, in that the continuity equation [Eq. (3.2)] is not satisfied. This

arises from the nonzero v in Solution II, since nV • v 1 ^ 0. To
r

balance this term in the continuity equation, one needs a source term

to make up for the radial loss of plasma. For a more rigorous treatment

of this problem, one should solve the electron and the ion continuity

and momentum transfer equations self-consistently , in order to determine

the velocities, the density profile, and the electric field profile for

a given system. This has been done, for example, for a weakly ionized
86

plasma in a positive column. We do not pursue such a study here; the

purpose of this appendix has been to illustrate the type of ion motion

which arises with strong electric fields.
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Appendix C

EFFECT OF ELECTRON TEMPERATURE FLUCTUATIONS ON WAVES

PROPAGATING PERPENDICULAR TO THE MAGNETIC FIELD

In this Appendix, we prove that the electron temperature has no

effect to any order on the waves studied in Section 3. This means that

Eq. (3.18), which gives the relationship between $ and n when the

isothermal assumption is made, is valid even if the electron temperature

is considered as a wave variable. For generality, we assume that n
n(

r)

and T ̂ (r) are arbitrary functions of r.
eO
From Eq. (3.13), we can solve for the 'electron velocity

where v and v are the diamagnetic and E X B velocities
~D ~E ~ ~

i X V. (nT )
<-̂ >7 -^ O

i X E
^-- , (C.3)

and i is the unit vector in the direction of the magnetic field. If

we insert the velocity from Eq. (C.I) into the continuity equation,

Eq. (3.12), and use the result

Vx • i x Vx(nT )
) = ^5_ — = o , (c.4)

the continuity equation becomes

Il+Vl ' <avE> = 0 . (C.5)

Equation (C.5) is valid to all orders, so the electron temperature drops

out of the analysis. The first order version of Eq. (C.5) is

172



For the Gaussian number density distribution in Eq. (3.1), this reduces

directly to Eq. (3.18), which we derived making the isothermal assumption.

This proves that for the dispersion characteristics of these waves we

may neglect even a zero order gradient in the electron temperature, and

use the isothermal assumption. :

On the other hand, the above result does not imply that there are

no electron temperature fluctuations associated with these waves. Indeed,

we find that there can be such fluctuations, and derive an expression

for them below. We use the electron heat transfer equation for variations
58

perpendicular to the magnetic field, which can be written as

dT nT
1 n *T ~ T ̂ - | V1 • _| (i X 7T ) = 0 , (C.7)
2 dt edt 2 •*- . eE ~z -1

where d/dt = d/dt + v • V~e -Le
46

We use the identity

_ v • — C i x V T l — — n v ' V T
2 -L eB ~z -L e' ~ 2 ~D -1- e

(C.8)

and Eq. (C.I), to reduce the heat transfer equation to

- Te (It +-^E ' Vl)n = ° ' (C'9)

Also, from Eqs. (3.14) and (3.16), we have to first order

TeO Tim

n -eO eO

where the prime denotes differentiation with respect to r. The first

order heat transfer equation then yields
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^el 2 /M

T n
 3 UJ.e0 ~ X..Q/ u; + «VrB

Since u> = - mE_/rB is not, in general, an eigenfrequency as seen from

Eq. (3.35), we may eliminate 0 from Eq. (C.ll), by using Eq. (C.6).

This gives an expression for the electron temperature fluctuations:

T IT ' /T \ n
!sl = î £°) _1 . (c.i2)
eO 00 0

Thus, even though the dispersion relation for the waves is not affected

by the isothermal assumption for the electrons, there will be

temperature fluctuations if a zero order temperature gradient is present,
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Appendix D

ION VISCOSITY TENSOR INCLUDING ION-ION COLLISIONS

We use rectangular geometry, with the magnetic field in the z-
2 2

direction (see Fig. 3.2), and assume w . »v... The components of the
58 cl 1X

viscosity tensor given by Braginskii are

jt = - — (W + W ) - — (W - W ) - T] W
xx 2 xx yy 2 xx yy 3 xy

it = - — -(W + W ) - — :(W - W ) + r] W
yy 2 xx yy 2 xx yy '3 xy

jt = - -n w
zz 0 zz

jt = Jt = - ri W + -̂ (W - W ) , (D.I)
xy yx 'l xy 2 xx yy

Jt =Jt = - T ] W - 1"! W ,
xz zx 2 xz 4 yz

it = n = - TI w + "H, w
yz zy 2 yz 4 xz

.We need the definition

-6, V • v. , (D.2)
x, 3 -C,k ~i

where v.. is the velocity component in the x. -direction (x ,x ,x
i-\s \ f 1 2 3

x,y,z for recta

Finally, we have

x,y,z for rectangular geometry), and 6. is the Kronecker delta.
/ , k

/hT.\ „ / n T . W v . A A^A
ri = 0.961—-\, TI = — I — ~ ) "^ > TI = 4n , r| = -I—ij, r\ = 2r

\Vii/ 1 V^ci/V^ci/ 2 1 3 V^i/ 4

(D.3)

58
where V.. is the ion-ion collision frequency. This is defined as
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. 3.3 X !0 X_ _. , 0..4,

where X = 23.4 - 1.15 log n + 3.45 log T is the Coulomb logarithm
e

(for T < 50 eV) , m and m. are the proton and ion masses, Ze is
e p i

the charge of an ion, e is the electronic charge, n is the number
-3

density in cm , and T. and T are the ion and electron
i e

temperatures in electron volts.

Likewise, the electron-ion collision frequency for momentum
58

transfer, v . , is given by
ei

V . = 2.9 X l(f6 X -|S- • (D.5)
e i m3 / 2T '

e
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