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ABSTRACT

This thesis describes a series of studies of low-frequency quasi-
static instabilities in a fully ionized plasma. The plasma is assumed
to be immersed in a uniform magnetic field, and is either uniform or has
a number density gradient perpendicular to the magnetic field; A moment
equation description of the ion and electron dynamics is used; collisions
are assumed to have a strong effect on electron motion along the magnetic
field., Before considering specific modes, a stability anaiysis is
developed which allows a classification of wave growth characteristics
to be made for a bounded syétem from solutions to the dispersion relation
for an infinite system. Also, a method is given for calculating the
normal mode frequencies and wave'profiles by using the reflection
coefficients at the boundaries.

For wave propagation perpendicular to the magnetic field, the flute
wave is studied in cylindricalbgeometry. The destabilizing effect of a
radial electric field is considered by solving a differential equation,
Both analytic and numerical solutions are given which include the eigen-
frequencies and eigenfunctions. The effect of the plasma column being
radially bounded is investigated, and results of previous workers are
generalized. The transition toerlvin-Helmholtz instability is illustrated
for sharp rotational shear of the column., In addition, two instabilities
observed in a hollow cathode arc discharge experiment carried out at
Stanford are identified as flute instabilities,

For propagation at an angle to the magnetic field, resistive drift
waves driven unstable by a density gradient are considered in rectangular
geometry, A general dispersion relation is derived which includes ion
axial motion, electron heat transfer, and electron axial drift. Comparison
is made with dispersion relations of other authors, and the effects of
these terms on the wave solutions are illustrated; both frequenéy and
values of the first order variables are given, The solutions are ihter—
preted for bounded systems, using the method presented in the thesis. -
This provides a proper explanation of some experimental results obtained
el sewhere ffom a drift wave experiment in a Q-machine. The charaéter-

istics of an entropy or temperature wave are also studied.
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For propagation parallel to the magnetic field, the stability of
ioﬁ—acoustic waves is studied; frequency and values of the first order
variables are again given. The destabilizing effect of elecfron drift
is investigated, and it is shown that an estimate of the threshold'dfift
for instability given by other invéstigatofs is too large if Ti < Te s
due to collisional energy exchange between electrons and ions. Further,
instability is found in the absence of an electron drift when 2Ti S'Te y
again due to collisional energy exchange., Normal mode solutions for a
bounded plasmavare also given, These results are valid for a plasma ih
which the temperature difference is maintained by an external source.

In addition, the case of a plasma equilibrating in time (Ti - Te) is
considered, and it is found that here ion-acoustic instability should

not grow to a significant amplitude,
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1. INTRODUCTION

The primary purpose of this research is to obtain the characteristics
of quasistatic instabilities in a fully ionized plasma.l These
instabilities will be studied in the low-frequency range below the ion
plasma frequency, wpi’ and generally below the ion cyclotron frequency,

ci ci
field is present. The instabilities considered arise in plasmas for

w . (w . < wpi in all plasmas of interest here), when a static magnetic

which a moment equation description of the ion and electron dynamics is
appropriate. This applies to those plasmas in which the effects of
particle motion are localized spatially, typically by a magnetic field
for motion perpendicular to the field, and by collisions for motion
parallel to the field. Specific criteria will be discussed in Sections
3 and 4..

It will be useful to keep in mind the following features of these
instabilities, First, the motion of the ions is usually the more involved;
that of the electrons is simply described as the motion of an inertialess
fluid. This is in contrast to high-frequency instabilities and waves
with frequencies of the order of the electron plasma or cyclotron
frequencies,.where the ions can be assumed to form a stationary background,
since their mass is much larger than that of the electrons. Second, for a
plasma configuration to be unstable, one should be able to identify a
source of energy for the instability. This source often takes the form
of a drift motion of the particles, as arises, for example, when a DC
electric field is present. For an electric field perpendicular to the
magnetic field, an E X«BJ/B2 Hall drift velocity arises for both electrons
and ions; for an electric field parallel to the magnetic field, a parallel
drift arises with the velocity of the electrons being much larger than
that of the ions. The kinetic energy available from these particle drifts
may also be supplemented by the potential energy which arises from plasma
inhomogeneities, such as a pressure gradient. Sometimes a combination of
these sources is needed for instability, as we shall see in Section 3.

Interest in low-frequency instabilities arises from studies of both
man-made and naturally occurring plasmas. For man-made plasmas, the most

ambitious goal has been to confine a hot, dense plasma long enough to



attain controlled thermonuclear fusion.l In the late 1950's, confinement
of particles by a magnetic field éeemed promising, but it was found that
increasing the magnetic field strength did not always lead to the
expeéted increased confinement either for weakly ionized plasma52 or for
fully ionized plasmas.3 The cause of this was later identified as plasma
instabilities;4’ which arose due to the combined effects of a density
gradient and particle drifts. Growth of these instabilities leads to an
increase in the flow of plasma (both ions and electrons) to the wall,
over what océurs for a stable configuration. This is known as
"anomalous" diffusion. In this connection, it is important to note that
it is the low-frequency instabilities, affecting both ion and electron
motion, which are potentially harmful to plasma confinement; the high-
frequency instabilities have little effect on the ions, unless they
couple nonlinearly to low-frequency waves.

From the 1960's to the present, there have followed extensive
investigations of plasma instabilities, both theoretical and
experimental. Investigators turned to devices such as the Q—machine,6
and the positive column,7 to study the basic wave properties of plasmas
without the gréater complexities of fusion study devices. The interest
in collisional plasmas has come from these lower temperature devices,
where Coulomb collisions and/or charged particle-neutral collisions can
have an important effect on stability. However, even in fusion
study devices such as the stellarator, instabilities in the initial
plasma heating stage may be described by collisional theory.8 Further-
more, it has been argued very recently9 that collisional instabilities
may occur in high temperature fusion devices such as the Tokamak, where
the required localization of particles is caused by small-scale
turbulence rather than classical particle collisions. Thus, there are
a number of man-made plasmas in which low-frequency collisional
instabilities may arise.

For natufally occurring plasmas, the ionospheré exhibits several
phenomena which are believed to be produced by low-frequency plasma
instabilities. Spread-F, which is the spreading of the height of the

10

F-layer on ionosonde records, has been observed since 1938, and is

associated with irregularities in the plasma density of the F-layer. A
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number of theories have been proposed to explain its origin, and though
none is conclusive, it is believed to be due to plasma instability.11
Farleylz has identified an instability which arises in the equatorial
electrojet as being due to a relative Hall particle drift in a weakly
ionized plasma. Finally, plasma instability is thought to be responsible
for the enhanced energy transfer between electrons and ions (i.e., over
collisional effects) required to obtain agreement between theoretical and
measured values of electron and ion temperatures in the solar wind.l

‘ We shall now consider a more detailed review of the subject matter
of this work. 1In Section 1.1, a discussion is given of the method by

which plasma stability is determined; Section 1.2 contains a discussion

of the low-frequency instabilities to be studied.

1.1 Stability Analysis

In order to determine the stability of various plasma configurations,
a linear perturbation analysis is carried out on the equations which
describe the configuration. Infinite rectangular geometry is often used,
and for spatial directions Xj’ along which the plasma is uniform, a
spatial dependence of exp(—iijj) is assumed, where kj is the wave-
number in the xj-direction. This chresponds to considering a single
wavenumber component in a Fourier transform for an unbounded system, or
a single mode, if a finite plasma with periddic boundaries is assumed.
Thus, k 1is usually taken as real. For directions in which the plasma
is not uniform, a general spatial dependence of the variables must be
allowed for, which leads to a differential equation in that coordinate
when the perturbed equations are combined. However, an exp(—ikxx)
spatial dependence can also be assumed in a direction where the
inhomogeneity is not too strong, the condition usually being taken as
kx >> C_1 dc/dx, where C 1is the inhomogeneous steady state parameter.
This is known as the local approximation, and is discussed in greater
detail in Section 4.1.3.

Similarly, the perturbed variables are assumed to have a time
dependence of exp iwt when the zero order plasma properties are
constant in time, which is equivalent to Fourier transforming in time.

In combining and solving the perturbed equations, including the



differential equations appropriate to inhomogeneous plasmas, a dispersion
relation, D(th) = 0, is obtained. This specifies the relation between
w and X for perturbations varying as exp i(wtffff)'

o The stébility of the plésma configuration is determined by'studying
the characteristics of D(wtg) = 0. Most often, w 1is considered to be
thé dependent'compiex variable, with ‘5 being the independent real
vafiable. If some value of k yields a value of w with a negative
imaginary part, and if a monochromatic plane wave could be set up with
that spatial dependence, it would grow in time, and. the plasma would be
unstable. Presumably the plane wave with the minimum imaginary part of
w for a real /5 would be dominant after a long time.

On the other hand, to describe the propagation of a wave away from
some point in space, it would seem more appropriate to solve D(wng) =0
for real w and complex ’5, the implication being that the instabilities
grow in space rather than in time. An additional ambiguity which arises
is that, for active systems, it is not clear whether the imaginary part
of 15 corresponds to growth in one direction or decay in the opposite
direction. These difficulties were first clearly pointed out in the
early 1950's by Pierce14 and Twiss15 in connection with plasma streaming
instabilities. Twiss indicated that the difficulty lay in the formulation
of the problem, and that two types of instabilities could arise if the
more realistic problem of response of the sjstem to. a localized
disturbance was considered. This approach to the stability analysis has
received much attention in the last fifteen years.ls—21

In 1958, Sturrock16 considered this type of problem for the response
of a system described by two coupled modes to a localized disturbance
switched on at time t = 0. He showed how to distinguish, purely from the
topology of the conformal mappings of D(wkg) = 0, between two types of
instabilities: the absolute instability which grows in time, and the
convective instability which grows in space. These definitions will be made
more precise in Section 2,1, Since the source is switched on at time
t = 0, the analysis must be for an initial value problem, so the Laplace-
transform is used in time. The time variation of exp iwt can $till be
assumed, but the inversion of the Laplace and Fourier transforms must be

performed to determine the response, which will be a wave packet rather
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than a plane wave. The medium is still described by a dispersion

relation D(whg) = 0, and the expression [D(uu,gg)]-1 may be considered
the transform of the Green's function for the system, as seen in Section
2.1. Subsequently, a number of workers have developed these ideas to
varying degrees of generality.17—21 However, all of these analyses apply
to media which are infinite and uniform in the directions that the Fourier
transform is applied, and, since all physical systems are bounded, leave
open the question of how to interpret the behavior of bounded systems

from wave solutions obtained for infinite media. The answer to this
question for certain systems is the major contribution of Section 2.

There are situations in which one may argue the validity of using
the results obtained from an infinite model directly in explaining the
behavior of a physical system. In these cases, the boundaries should
have no appreciable effect on the waves, something which is often
tacitly assumed, but rarely shown, in comparisons between theory and
experiment. If the boundaries could be made effectively reflectionless,
the system would appear infinite as far as the waves are concerned. This
can be achieved, for example, with ion-acoustic and drift waves on a
long discharge column,22 where the axial magnetic field lines diverge
slowly at the ends of the column, and the electrodes are located well
beyond the uniform field region. The waves are effectively absorbed in
the boundary region. Also, in applying the theories to practical
geometries, periodic boundary conditions may be used for coordinates
which close on themselves. For instance, drift modes derived in
rectangular coordinates (x,y,z) are adapted to cylindrical geometry
(r,8,z) by identifying ky with m/a for waves varying as exp(—ime),
where m is the azimuthal mode number, and a 1is the radius at which
the wave is localized (see Section 4). However, as we shall see in
Sections 3 - 5, the effect of the boundaries can be important for plasma
stability.

One approach to including the effect of boundaries is to consider
each particular experimental configuration separately, and apply the
appropriate boundary conditions determined by detailed physical ’
considerations. This approach has been taken by a number of authors,23“28

but the analysis is often quite involved, and the results only applicable

5



to the specific problem. It is, however, the only completely
satisfactory way to solve the problem of a bdunded plasma. There are
two reasons for this. PFirst, bouhdaries can supportléurface waves
which are not accounted for in the infinife.plasma dispersion relatipn;
second, the boundaries will in general couple the lineafly independent
modes of the infinite plasma dispersion relation together, along with the
surface waves, in order to satisfy the appropriate boundary conditioné.
There are systems for which it is sufficient to use a less detailed
approach to determine the effeét of boundaries.. For example, in ideal
acoustic or electromagnetic resonators, there are no surface waves, and
the normal modes can be interpreted in terms of the dispersion relation
for the waves of an infinite system. Also, the effect of a lossy
boundary, or one which couples linearly independent modes, is often
accounted for by ascribing a reflection coefficient to the boundary for
the dominant wave of the system. Sihce there are many existing theories
of plasmg waves in an infinite medium, it would be useful to develop a
similar technique in which the infinite system dispersion relation can be
used to determine the behavior of bounded plasma systems. We treat this
problem in Section 2, and show, subject to certain restrictions, how to

interpret such theories for bounded systems.

1.2 low-Frequency Instabilities

1.2.1 Waves Propagating Perpendicular to the'Magnetic Field

In 1954, Kruskal and Schwarzschild29 used the single—fldid
MHD equations to show that a plasma supported against gravity by a
magnetic field can be unstable to flute-like perturbation on the plasma
boundary (i.e., no variation along the magnetic field direction). The
instability is analogous to the Rayleigh-Taylor instability of ordinary
hydrodynamics, which develops when a heavy fluid is supported against
gravity by a lighter fluid. Several years later, Rbsenbluth and Longmire30
considered the same instability using the guiding-center equations for
the particles, and gave a clear physical explanation of how it develops{
A kinetic treatment of this flute wave31 revealed that the finite ion
Larmor radius has a stabilizing effect, a point confirmed both by_a

moment equation approach including collisionless viscosity,32’33 and by



34,35 A . . .
the guiding-center equations. ’ The stabilization is due basically

to the ions sampling the perturbed electric field over their gyro-orbits.
The form of this instability studied in Section 3 arises in

a plasma column immersed in an axial magnetic field, which may rotate

due to a radial electric field. The inertia or centrifugal force effect

on the ions is analogous to a gravitational force, and the radial density

varies continuously, but decreases with radius. When the electric field

is a linear function of radius and the density profile is Gaussian, the

column rotates uniformly, and one obtains a second order differential

1,33
equation in combining the perturbed equations.3 ’

For nonuniform
rotation, Rosenbluth and Simon36 give the resulting second order
differential equation as obtained from a new set of moment equations
derived from kinetic theory. To derive these moment equations, quantities
are ordefed in a manner more consistent with.a finite ion Larmor radius '
than are the usual moment equations. However, it turns out that this
differential equation can also be derived from the usual moment equations,
which is the approach used in Section 3.

We consider solutions to this equation for both uniform
rotation, when analytical results are obtained, and for nonuniform
rotation, when numerical methods are used. Particular attention is paid
to the radial extent of the column, as this has a strong influence on
the stability of the waves. The effect of nonuniform rotation due to
the radial electric field is considered for the lower order azimuthal
modes, including the transition to rotation with a sharp shear. For
this latter case, the additional destabilizing mechanism of velocity

shear can lead to a Kelvin-Helmholtz instability.37’38

Finally, two low-
frequency instabilities in a hollow cathode arc discharge experiment are

identified as the type of flute wave studied here.

1.2.2 Waves Propagating at an Angle to the Magnetic Field

When the preceding problem is generalized to allow propagation
at an angle to the magnetic field, a new instability can develop in the
presence of a density gradient alone. This is the collisional drift wave
first discussed by Moiseev and Sagdeev39 in 1963, and by Chen40’41 in

1964-65. The drift wave propagates in the direction of the electron



diamagnetic drift, and the axial (i.e., along the magnetic field)
resistivity of the electrons can maintain a phase shift between the
perturbed density and potential to produce instability. The dispersion
relation describing this wave is_usually derived from the'moment
equations, although it can be treated from kinetic ;heory by using an
appropriate collision term.42 There is also a coﬁnterpart to this
instability for a collisionless plasma, where resdnant particle effects
replace resistivity in maintaining a phase shift between the perturbed
density and potentia1.42

In the early treatments of collisional drift waves, it was
found that any density gradient could produce instability, so it was
sometimes referred to as a "universal' instability. However, including
the effect of collisional viscosity (ion-ion collisions) can stabilize
the instability, as discussed by Hendel et 31.43 Another modification
to the drift wave arises when ion and electron heat conduction are
included in the theory, as shown by Galeev et El"44 and by Tsai et 3}.45
The effect of ion heat conduction is very small, but that of the
electrons can be significant. 1In fact, the inclusion of the electron
heat conduction along the magnetic field is needed to obtain a
destabilizing effect<£rom an axial electron drift (a current) for the

? This is in contrast to the drift wave found for weakly

drift wave.
ionized plasmas, where charged-neutral particle collisions are important,
and an isothermal theory reveals a destabilizing effect due to axial
electron drift.46

. In Section 4, we first derive a general dispersion relation
for the drift waves, and then systematically examine the various
approximations to it which give the dispersion relations of other authors.
The effects of these approximations are illustrated for pafameters
appropriate to a Q-machine experiment, using the procedure obtained in
Section 2 for determining the étaBility of bounded plasmas. These
results allow us to correctly explain a recent drift wave experimeﬁt in

a Q—machine.47



1.2.3 Waves Propagating Parallel to the Magnetic Field

When one restricts the direction of propagation of the waves
to lie along the magnetic field, they beéome ion~acoustic waves of the
type'first studied by Tonks and Langmuir in 1929.48 Thesé waves are
similar to sound waves in a neutral gas, except that there are Coulomb
forces present; these cause the waves to be driven by a combination of
the electron and ion pressures, while the inertia is due to the ions.
Kinetic treatments49—52 of these waves for a collisionless plasma in the
early 1960's indicate stability in the absence of electron drift. The
waves are Landau damped by the electrons and ions, the latter predominating
except when T_l << Te. In the presence of electron drift, resonant
particle effects can produce instability when Landau amplification by
the electrons offsets Landau damping by the ions. For a weakly ionized
magnetopiasma, with Ti << Te, Self46 has discussed ion-acoustic
instability. due to electron drift, using the moment equations with the
isothermal assumption. In this case, the destabilizing effect of drift
results from electron-neutral collisions, and offsets ion~neutral
collisional damping.

For fully ionized collisional plasmas, Coppi and Mazzucato8

have found ion-acoustic instability due to electron drift only if
electron heat conduction is included, as for collisional drift waves.
In Section 5, we treat this instability in detail, and show, in addition,
that electron viscosity and collisional energy transfer between electrons
and ions at different temperatures (Ti < Te) can also produce instability.
Electron drift is required to make the electron viscosity destabilizing,
but a temperature difference can produce instability without electron
drift. This latter effect is analogous to a neutral sound wave
instability in a‘weakly ionized plasma studied by Ingard and Schulz53
which is driven by collisional energy transfer between electrons and
neutrals with Tn < Te. Schulz54 also suggested the occurrence of this
type of instability in fully ionized plasmas, as studied in Section 5.
Again, the analysis of these waves includes a description of their
behavior in bounded systems using the methods of Section 2.

In conclusion, it should be noted that we follow the classi-

fication of the wave types by the direction of propagation because of



historical development, and for simplicity of the analysis. As the
angle of propagation with respect to the magnetic field is varied
céntinuously, one wave type may evolve into another, or one wave type
may become more unstable than another. As far as possible, we shall
point out the connectiohs between the wave types in the study to

follow, particularly in Section 4.
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2. STABILITY ANALYSIS FOR BOUNDED MEDIA

In this section, we give a formal procedure for interpreting the

solutions to the dispersion relation of a systen,
D(wy_lj) =0 ’ (2'1)

where D(whg) is the dispersion function. This dispersion function is
obtained by perturbing to first order the equation describing the system,
and then eliminating the perturbed variables among these equations. The
presence of the wavenumber.'E implies that the equations have been
Fourier transformed along the direction of _5, and that the system is
infinite in this direction. Similarly, the equations have been Fourier
or Laplace transformed in time, so Eq. (2.1) describes the relation
between w and Kk for linear pefturbations varying as exp i(wtjgzg).
The system is said to be unstable if a real ‘E' yields a complex w
with a hegative imaginary part, i.e., Im(w) < O, for the perturbation
then grows in time. For an infinite system,'E is assumed to take on
any real value.

As mentioned in Section 1, a number of authors have already
‘considered improvements to this method of stability analysis. Most of
these follow Sturrock,16 who has clearly pointed out the importance of
considering the perturbation to be localized in space, i.e., a wave
packet, rather than a physically unrealizable monochromatic plane wave.
In this case, [D(w{E)]_l acts like the Laplace-Fourier transform of the
Green's function for an initial value problem, and one must invert the
Laplace and Fourier transforms to determine the wave packet response.
The system is still unstable if any real ‘5 yields an Im(w) < 0, but
the characteristics of the instability may be changed. We shall review
this procedure for infinite systems in Section 2.1.

In using the results obtained from an infinite system to interpret
experimental results, one must use caution, for all real systems
are bounded. Thus, in Section 2.2, we consider the stability analysis for
bounded systems which can be treated as a section of an infinite system.

Strictly this is applicable to media which can be described by the fluid

11



equations, as discussed in Section 2.2.1. In such a case, Eq. (2.1)
still describes the medium, but the boundary conditions now restrict the

values of k.

2.1 Waves in an Infinite Medium

2.1.1 Basic Model

We consider a time-invariant system of general cylinﬁrical
‘form, infinite and uniform along =z. It is assumed that the transverse
eigenvalue problém has been solved for the perturbed equatidns,so that
the perturbations now vary as exp i(wt - kz)} A single linearly
independent transverse eigenmode is considered with a dispersion relation
of the form 6f Eq. (2.1) when the vector on the wavenumber is dropped,
i.e., D(w,k) = 0. For simplicity, D(w,k) is taken to. be a polynomial
of order >a in w and of order B in Kk, as is the case for the fluid
treatment of piasmas. Derfler17 discusses cases when D(Q%E) is a
double-valued function as arises, in géneral, in the kinetic theory of
hot plasmas.

We consider the initially quiescent system to'be excited by
a localized source, s(t,z), following the approach of Briggs.19 The
source has the form s(t,z) = g(z)£(t), where g(z) = 0 for ‘z"> d, and
f(t) = 0 for t < 0. To find the spatial and temporal response of the
system to such a source, we ﬁust perform the inverse Laplace and Fourier

transforms. The system response can thus be written19

2 © o4y
V(t,z) = (%R) j J G(w,k) f(w) g(k) exp i(wt-kz) dwdk . (2.2)
=% ~®4ig

Here represents any first order variable, f(w) 1is the Laplace trans-
form of £(t), g(k) 1is the Fourier transform of g(z), and G(w,k) =
[D(w,k)]—l is the Laplace—Fourier'transform of the Green's function.
The Fourier'integral path (FIP) is taken along the real k—axis, while
the Laplace integral path (LIP) is taken below all singularities of the
integrand, i.e., C sufficiently_hégative, as dictated by causality. The
response can be written in a more useful form if we interchange the order

of integration. This yields
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w+ig

f(t,z) = %; F(w,2z) f(w) exp iwt dw , (2.3)
-®+io
where .
F(w,z) = %; f G(w,k) g(k) exp (- ikz) dk . (2.4)

Equations (2.3) and (2.4) give the required mathematical
formalism for finding the response of the system to some source. We will
apply it to the two most géneral questions of interest. The first question
relates to determining the natural response of the system; that is, what
is the response to an impulse source in space and time? If the natural
response eventually grows indefinitely in time at a given position, the
system cannot reach a linear steady state. On the other hand, if the
response eventually decays at a given position, one may inquire into the
second question, which relates to the forced response of the system;
that is, what is the response to a localized steady sinusoidal source

switched on at t = 0?

2.1.2 Natural Response

To study the natural response of the system, we let f(t) =
b (t), where O (t) is the impulse (or delta-) function. 1In order to use
contour integration in evaluating the integrals of Eqs. (2.3) and (2.4),
we shall be interested in the singularities of the integrands. Consider
first the evaluation of F(w,z) for any w = wL on the LIP. Since
g(z) 1is localized, then, for any physically realizable form, g(k) is
an entire function, i.e., it has no singularities in the finite k-plane.
Thus, the only possible singularities in the integrand of Eq. (2.4) are
those of G(w,k). In the simple cases to which the present discussion
is limited, these singularities of G will be poles at the zeros of
D(w,k). A sketch of these zeros iﬁ the k-plane is shown in Fig. 2.1(a).
The dotted lines indicate the loci of the zeros as Im(w) is increased
for constant Re(w), as shown by the corresponding dotted line in Fig.
2.1(b). As w traverses the LIP, one of these zeros may appear on the
real k-axis. This corresponds to the LIP intersecting one of the w

a

(k real) contours, where Wy is a solution to D(w,k) = 0, as shown in
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Fig. 2.1 (a) The loci of the zeros of D(w,k) in the k-plane when Im(w)
increases for constant Re(w). (b) The corresponding path taken by w
is shown by the dotted line. Solid lines in (b) represent wa(k real)

contours.
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Fig. 2.1(b). However there is then an ambiguity in the'k—integration as

to which direction to integrate around this pole on the real k-axis.
This is resolved by initially taking the LIP low enough in the w-plane
so that thé zeros of D(wL,k) are off the real k-axis; that is, o = Ty
where - oo is less than the minimum imaginary value of %x(k real). Only
then do we unambiguously satisfy causality, which is proved as follows.
With In(w) < 00, we may label the zeros of D(w,K) in the k-plane as kt
or k_, depending oﬁ whether or not they appear in the lower or upper
half planes, respectively, as shown in Fig. 2.1(a). F(w,z) can now be
evaluated by contour integration, with the contours being closed in the
10Wef_ha1f k-plane for z > 0 and in the upper half k-plane for 2z < O.
It is clear that F(w,2z) 1is nonsingular for any w below co in the
w-plane. Causality is thus assured, since, for the w—plane.integration
in Eq. (2.3), we may close the contour in the lower half plane for

t < 0, enclosing no poles [f(w) = 1 here], and thus giving VY (t,z) = O
for t < 0. As we shall see, the ésymptotic natural response does not
depend on the ‘explicit evaulation of F(w,z) for these simple poles,
although we will need to return to this evaluation for the forced
response in Section 2.1.3. .

In order to find the asymptotic time response of the systenm,
we wish to deform the LIP as'far as possible upward, where it will become
clear that the asymptotic response is governed by the lowest singularity
of F(w,z). As the LIP is raised in the w-plane, e.g., C - Gl, the poles
due to G(wL,k) will cross the real k-axis when the LIP intersects the
lowest branch of wa(k real). When this happens the function F must
be redefined as its analytic continuation,‘F, as the FIP is deformed to
confinue to include the same poles as before. This is illustrated in
Fig. 2.2, where we show, along with the deformed FIP, the loci of two
poles of G(wL,k) in the k-plane for several LIP's. The poles may be
compared with k+ .énd k. in Fig; 2.1(a). These loci are the contours

2 2
of wL = w, o+ ig, as shown in Fig. 2.3, in the map of wL into the k-

plane via D(wL,k) = 0. Also shown in Fig. 2.3 is a branch of the Wy

(k real) contour [see Fig. 2.1(b)].
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The LIP may be continuously raised (7 - 02) until two poles of
G(mL,k) collide or merge through the FIP, pinching it between them, as
shown in Fig. 2.2. When this happens, at (ws,ks),'We have a double root
ks(ws) of D(w,k) = 0, i.e., a saddle point of w(k) in the map of w
into the k-plane or, equivalently, a branch point of k(w) in the map
of k into the w-plane via D(w,k) = 0. 1In raising the LIP still further
(7 - 03), it must be deformed around the branch cut of which the branch
point (ws,ks) forms one end point, as shown in Fig. 2.3. The
asymptotic response is clearly governed by the lowest such branch point

19
in the w-plane and can be evaluated as

g(k ) exp i(w t - k z)
V(z,t) —> RSN 1Y =2 (t ).
[2:11(5—2-) (@] tl/2 (2.5)
dk dw w Kk : . :
S S

In general, saddle points of w(k), i.e., the branch points of
k(w), are given by the simultaneous solution of D(w,k) = 0 and
BD/ak = 0. However, not all such saddle/branch points are relevant to
the‘sfability analysis, but only those which correspond to the merging
of roots k(w) for D(w,kK) = 0 from opposite half k—planés,and thus
pinch the FIP. If the lowest such branch point (ws,ks) lies in the
lower half plane (wsi < 0), the response eventually increases without
limit (in a linear analysis) at all finite 2z, as described by Eq. (2.5),
and the system is by definition absolutely unstable. On the other. hand,
if the lowest such branch point lies in the upper half plane (uus,1 > 0),
the response eventually decays to zero at all finite 2z, according to
Eq. (2.5). 1In this case, if the system supports instabilities, i.e., if

any wa(k real) contour dips below the real w-axis, it is convebtively

unstable, and the perturbation grows but convects away. 1In all cases,
the asymptotic response has an exponential-envelope in space (except
near the front of the disturbance) given by exp(—ksiz). .

The essential difference between absolute instabilities and
convective instabilities is shown in Fig. 2.4. For a system which is

absolutely unstable, any random noise will grow and saturate in a

18
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nonlinear state, so that further linear analysis is not appropriate.
However, since for convectively unstable or stable systems the natural
fesponse eventually decays, one may consider the response to a

continuous forcing function. We might expect a convectively unstable
system to exhibit spatial amplification. A more detailed~explanation of.

the convective instability is given in the next subsection.

2.1.3 Forced Response

We consider a localized sinusoidal source switched on at
t =0, i.e., s(t,z) =0 (z) exp iwot for t > 0, where w 1is real.
This gives g(k) = 1, and f(w) = [i(w—wo)]_l. We are again interested
in the asymptotic response,so the LIP is moved upward to evaluate Eq.
(2.3). The system is assumed free of absolute instabilities, so that
any branch points in the w-plane due to the colliding of poles are in
the upper half w-plane. The first singularity encountered in the
integrand of Eq. (2.3) by moving the LIP upward is due to f(w) at
W =W on the real w-axis. The asymptotic response is thus determined
by ‘F(wo,z). . - ‘ ‘
To evaluate F(wo,z), which is the analytic continuation of
Eq. (2.4), we use contour integration as mentioned in Section 2.1.2. The
integration contour is closed in the upper half k-plane for =z < 0 and
in the lower half k-plane for Az > 0. The pdles of G(wo,k) included
in the upper half plane and lower half plane contours occur at

k = ké(wo) and k = kg(wo), respectively. It is important to note that

some of the ké(wo) may actually be in the lower half plane and some of
the kg(wo) in the upper half plang. These are the poles which Cross
the real k-axis as the LIP is raised from 00 " to the real w-axis. 1In
defining AF(wO,z) as the analytic continuation of F(wo,z), the contour
along the real k-axis is deformed to always include the same poles as
when o = Uo (see Fig. 2.2); that is, the positions of the poles on the
initial GO contour determine whether they appear in the response for

z >0 or z <O.

By the theory of residues, Eq. (2.4) can be evaluated as

20



i exp(- isz)
F(wo,z <0) = L — , (2.6)
_ B Pp(w_,k)
-0
dk ' W
+
o i exp(- ik,z)
F(w,» 2z > 0) =2 = B , (2.7)
B aD(LOO,k)
dk k=k+

&

where, for simplicity, we have only considered simple poles. From Eq.

(2.2), we see that the asymptotic response is

t(t,z) —> ?(wo,z) exp iwot (t =» =) . " (2.8)
' Note that if any of the ké have crossed the real k-axis as the LIP

was moved upward from CO to the real w-axis, they now appear as
spatially amplifying waves in the response. This is the condition under
which a system is convectively unstable. If none of the ké has crossed
the real k-axis, all of the waves decay away from the source, and the
system is stable. In general, several waves will be excited by the
source (different PB's), but, as ]z‘ increases, the wave with the
smallest spatial damping rate or largest spatial growth.rate will

ultimately dominate.

2.2 Waves in a Bounded Medium

2.2.1 Physical Model

In this subsection, we.discuss the response of a uniform
cylindrical system, as in Section 2.1.1, but now of finite length, 1,
with arbitrary terminations at =z = - L/2 and z = L/2.' The response
will be determined from the appropriate roots of the linear diSpersion
reiation of an infinite system containing the same medium,together with

the boundary conditions.
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The conditions under which it is valid to treat the finite
system as a terminated length of an infinite system need some discussion.
Briefly, it is valid for ordinary dielectrics and cold plasmas and also,
subject to conditions discussed later, for fluids.and plasmas treated
via fluid equations. It is not, however, in general valid for collision-
less plasmas treated by kinetic equations. The reason for the distinction
between dielectric or fluid treatments on the one hand, and kinetic
treétments on the other, is that in the former the particle dynamics used
to calculate the charge, p, and current,/g, in Maxwell's equatioqs are
determined purely by the local fields E and _E, whereas in the latter,
p and )i are determined via integrals over the particle trajectories,
including earlier encounters with the boundaries.zgn26 Thus in a cold
or fluid model, a boundary imposes conditions on the fields and fluid
variables only at the boundary, where#s in a kinetic model, the effect
of the boundary conditions on the particles is felt on the particle
dynamics throughout the system. ,

For simplicity, we assume that the dispersion relation is

quadratic in k, which can be written as

D(w, k) k2 + b(w)k + c(w) = 0 , (2.9)

or

D(w,k) = [k - K" (w)][k - kK (W] =0 . (2.10)

These can be solved to yield the relation
+ - 2 . 1/2 :
Kk =k =2 |b (w) - 4c(w " (2.11)

The roots k+ and kK are.taken to be excited on opposite sides of a
source. More explicitly, from the analysis of Seétién 2.1.3, kf and k_
must lie in the lower and upper half k-planes, respectively, as .wi- -,
There 'are special cases for which both waves are excited on the same side
of a source. For example, a cold beam-plasma system with

D=1- wi/wz - wi/(w—kvb)z has two Kk roots corresponding to waves
excited onAthe downstream side. Here wp and w_ - are the plasma

b

frequencies of the background plasma and beam, respectively, and vO is
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the beam velocity. In such cases, the downstream boundary can produce
no effect upstream, so the waves act as though the boundary were not
present. Finally, the case when a dispersion relation is of higher
order than quadratic in k is discussed in Section 2.2.5.

The boundaries are described by complex reflection coefficients,
p1
as shown in Fig. 2.5. Specifically, p

and 02,‘for the boundaries at z = - L/2 and z = L/2, respectiVely,
1 and pz give the ratio of the
reflected wave to the incident wave at the boundary, and have the forms

o, = |p2| exp + iB (2.12)

1 2’

where O < \pl’z\ €1 and -n < 81,2 < n. It is assumed that the phase
of the reflected wave is given, either from physical arguments or by
experiment, as leading or lagging the incident wave by a certain angle
|9|, and the convention is adopted that 9 > 0 when the reflected wave
leads and 8 < 0 when it lags. In order to preserve this convention,
irrespective of the sign of W the alternate signs are introduced in
Eqs. (2.12), and should be taken as + or - for w, >< 0, respectively.

Also, p and pz may be functions of the frequency, w, although this

1
dependence will not be shown explicitly in what is to follow.

s(t,2)= f, (1) S(2)
A

* III I

N

-
~
N

-L/2 0
Fig. 2.5 Bounded system with reflection coefficients Py and

o} defined in Eq. (2.12), and source s(t,z).

2’

23



For simplicity, we consider the source to be localized at
the origin, i.e., s(t,z) =‘f(t)5(z), since the form ofrthe asymptotic
natural response is independent of the position of the source. This is
provéd in Appéndix A, where we derive the response of»é system té én‘
arbitrarily positioned source. The results of this more general

analysis will be used in Section 2.2.4 to study the forced response.

2.2.2 Mathematical Model

If we are to use the methods of Section 2.1 in evaluating
the response of a bounded system to some source, our model must be
modified. We have to account for the waves reflected from the boundaries,
and produce a spatially infinite and uniform model to use the Fourier
transform method of Section 2.1. The reflected waves can be accounted
for by using an infinite train of image sources, each one representing
a reflected wave. This is akin to the method of images used in
electrostatics. Care must be exercised, though, as waves from these
image sources must sometimes propagate as k. waves, and sometimes as k+
waves, to model the system properly.

As an intermediate step, we define the reciprocal medium as

the medium with the dispersion relation
D(w,-k) = O. ‘ (2.13)

The bounded system can now be modeled as in Fig. 2.6, where we have
included the image sources. The clear area denotes the regulaf medium,
and the shaded area denotes the reciprocal medium. These areas alternate
spatially at odd multiples of L/2. It is understood that the boundaries
between the media have no effect other than to convert a k. wave into a
k+ wave and vice versa. This, of course, does not correspond to é
physically‘realizable model, since in that case there would be ;eflections
from the boundaries between the different media. However, for the

bounded system, this effect is included in the reflection coefficients,

p1

coefficients in determining the amplitudes and phases of the image

and pz, and, in our model, we choose to account for the reflection

sources. So, given the initial source fo(t), a geheral expression for

the source fn(t), where n 1is an integer, can be written as

24
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£ (t) = |pllexp(i i) £ (t) (2.14)

if n 1s odd and positive, or even and negative. Otherwise, we have.
= + if t ~ (2.15
£ () lozl exp(x i%,) £ _,(t) , ( )

where the sources are located at =z = nL. The response to each of these
sources in the bounded region (- L/2 < z < L/2) corresponds to a
reflected wave of the original system. Just how to find these responses,
and how to reduce the model to one that is uniform in space, is discussed
below.

To evaluate the response due to the image sources, each soufce
can be considered separately and the results added together, which is valid
due to linearity. Since we are now only considering oné source at a time,
as far as the response in the bounded region (—L/2 <z =< L/2) is concerned,
all the regions of the reciprocal medium between the source and the
bounded region can be combined, beginning at the image source (remember
that the interfaces between the media do not produce reflections). The
procedure will then be to find the response to the image source in the
reciprocal medium up to the position where the combined reciprocal medium
ends. From this position on to the bounded region, the wave will be
treated as propagating in the regular medium.

As an example of this procedure, we shall evaluate the
response of the image source at =z = -5L. The essential steps are shown
in Fig. 2.7(a-c). 1In part (a) the basic model is shown, while in part
(b) all the regions of the reciprocal medium between the source and the
bounded region have been combined, beginning at the image source. Next,
we find the response at the position where the reciprocal medium ends,
i.e., at 2z = -5L/2. We do this by assuming that all space is‘filled
with the reciprocal medium, and use the analyéis for an infinite system
given in Section 2.1. The responée is thus given by Eqs. (2.3) and (2.4).
For the source at =z = -5L, the functions in the integrands of Eqs. (2.3)
and (2.4) have the form -G(k) = exp(- i5kL) and, from Egs. (2.145 and
(2.15), f_g(w) = lpll3|02!2Aexp[i 1(361+262)] fo(w).' Also, G(w,k)

= [D(w,-k)]T , i.e., we have the réciprocal medium. The response
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-SL -5L/2 -L/2 L

f-5
R 1 1 —
-SL -5L/2 o
(c)

Fig., 2.7 Equivalent models with respect to the response in the
bounded region (-L/2 < z < L/2) for a source at z = -5L.

Source T_s is given by Eq. (2.19).
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at z = -5L/2 is then

©+ig
1 3 9 .
t,-5/2 = — -5L/2 ; +(36
¥(t,-5/2L) = 5= Fw,-51/2)[p, [Pfo, |7 exp 1[wex(38,420,) 18 (w)aw,
.. ») i
+1GO .
(2.16)
where the k-integration has been performed to 6btain
B i5KL/2 i 15k L/2 :
Plu,-5L/2) = o | SR ISKL/D) 21 exp 19K L (2.17)
e (k+k ) (k+k ) k -k
The wave is now to propagate from 2z = —5L/2 to the bounded

region in.the regular medium. This portion of the wave's prqpagation is
accounted for by considering the wave response of Eq. (2.16) to’act like
a source for the region to the right of =z = —5L/2. It is in just this
sense that the interface between the media is said to convert a k wave
to a k+ wave with no réflection. This source is determined by finding

a source which, when placed at z = - 5L/2, produces the same response
there as given by Eq. (2.16). This source, shown in Fig. 2.7(c), has
the value f_. = exp(iSk L/2) T__. Again, Eqs. (2.3) and (2.4) are used
to find the response to the new source. We assume all space is filled
with the regular medium, so that G(w,k) = [D(w,k)}fl, and, with the
source at z = —5L/2, G(k) = exp(—iskL/Z). Equation (2.4) then gives

i expl[- ik+(z+5L/2)]

kt - k¥

F(w,z) = — (2.18)

Finally, this can be inserted in Eq. (2.3), along with the source term
E_s(w), to give the response in thg bounded region.

To generalize this approach to any image source, note that
the exponential factor relating E;S and‘_f_5 simply accounts for the
wave initially propagating from z = -5L to z = —5L/2 as a K wave. It
is thus reasonable, and can be shown, that any source fn at z.= nL

can be replaced by a source ¥n at =z = nL/2 with
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f = exp(-ink L/z)fn , (2.19)

+ >
where k is used for n < O.

This gives the spatially uniform model we have sought. It
consists of an infinite train of image sources at z = nL/2, whose
values are given by ¥n from Eq. (2.19). These sources are subject to
the regular medium only, so the analysis of Section 2.1 may be used to
evaluate the response to each source. The total response of the bounded

region is found by adding all of these respohses together to obtain

Ly p gy - if (W) + S
w(t,z) = — J‘ —_—_lexp(-ik z)+A(Z) 2 exp[-im(C_+C )]Pexp int dw,
21 k+ - K m=l 1 2

-®4+i0
' 0

(2.20)

+
where k= is used for =z “< 0. The other quantities in Eq. (2.20) are

+ -, L .
al =(k - k) 3 F 91 + i Lnlpll , (2.21)
o, = (k+ - k—)-é FO, 4+ i4dnlp ’ (2.22)
2 - 2 2 2 :

and

A(z) = [(1 + exp 10,) exp (- ik z) + (1 + exp i) exp(- ik"z)] .

(2.23)

Equations (2.20) - (2.23) give the basic mathematical equations needed
to evaluate the response of a bounded system to a localized source at
z = 0. _ )

It should be emphasized that Eq. (2.20) gives the response
for any time t, just as Eq. (2.2) gives the response of an infinite
system for any time t. Thus, the finite speed of propagation of the
reflected waves is taken into account. However, it is the asymptotic
response which is.most readily evaluated, and of most general interest,

so we shall concentrate on it.
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We shall consider the same two basic problems treated for the
infiﬁite plasma. First, the response of thé system is found for a source
which is an impulse in time. If this natural response evenﬁually grows
indefinitely in time, the system is unstable, and the linéar analysis has
given as much information as possible. 1If the respdnse eventually decays,
we may consider the second problem, i.e.,_the response to a steady sinu-

soidal source switched on at t = 0.

2.2.3 Natural Response

For this case, the source is an impulse‘in'time, i.e.,

f(t) = 8(t), so that fo(w) = 1 in Eq. (2.20). The first .step in
determining the response is to evaluate the infinite series in Eq. (2.20)
as a'geometric progression, which gives

@

b . 1

2 exp -1m(O£1 + az) = , (2.24)

m=1 exp i(al+a2)—1

for Im(al+a2) < 0. Thus, initially the LIP must be taken low enough in
the w-plane that the condition Im(a1+a2) < 0 1is satisfied, in addition
to the requirement that the LIP be below the branch point which occurs
when k' = k . This is located at w = ws, and is just the branch point
we found for the infinite system (Section 2.1.2) when the k-integration
contour was pinched by colliding poles (k+ and k hére).

To evaluate the asymptotic response of the system,the LIP
in Eq. (2.20) is raised upward, and, as in Section 2.1.2, deformed
around the branch points of the integrand. In doing so, the function
in Eq. (2.24) is analytically continued in order to include the region
for Im(al+02) > 0. The response will be govefned by the lowest branch
point‘in the w-plane. 1In addition to the branch point at ws wheh

+

kK = k_, there are also branch points of the integrand when the function

in Eq. (2.24) is singular, say at w = w . This occurs when
o + O, = 2n7 , . (2.25)

where n 1is an integer.
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Now if Wy is the lowest branch point, Eq. (2.20) can be
evaluated by using Eq. (2.11). The result, as in Eq. (2.5), has the
form

i t -k
exp 1(ws sz)

btz = ——p (t==),  (2.26)

where ks = k+(ws) = k_(ws). For this case, the boundaries have no
effect on the spatial form or time dependence of the response.

1f, on the other hand, the lowest branch point is at W
>Eq. (2.24) indicates that it will be, in general, a simple pole. The

response may then be written as

I (t,z) ~ A(z) exp iwnt ' (t » o) , (2.27)

where A(z) 1is given by Eq. (2.23). This response is due to the
constructive interference of reflected waves, and may be termed a
normal mode of the system. To see this more clearly, we rewrite Eq.

(2.25) as
(k" - K )L = [2nn % 6, +6,)] - i[talp,| lo, 17, (2.28)

where Eqs. (2.21) and (2.22) have been used. This equation states that
for the normal modes the phase shift around the loop must be an integral
multiple of 2n, and that the loop gain must be unity. It should be
noted that the wn's and the spatial dependence of the corresponding
modes are functions of the reflection coefficients. ‘

The normal mode frequencies, wn, are found by eliminating
(kf - k_) between Eqs. (2.11) and (2.28), and solving for w. 'Hence,

the wn's are given by solutions to

_ _
H(w,0,,0,,L,n) = {[2nn £ (8,49,)) - i &nlolllpzl} L

- bz(w) + 4de(w) =0 . (2.29)
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. +
1f the system is reciprocal, i.e., D(w,k) 1is even in k, then k = -k ,

and Eq. (2.29) reduces to

N2 -2 D
H(w,0,,0,,L,n) = {[2nﬂ t (B48,)] - itn lplllpzl} L “ # 4c(uw) = 0.

(2.30)

Recall that, in the above analysis, Dl

If such a dependence exists, it must be included in Egs. (2.29) and

and pz may be functions of w.

(2.30) tq solve for the frequencies wn. In Egqs. (2.29) and (2.30), the
whole range of n values (n = 0, *1, %2, etc.) is allowed; with the +
sign on (91+82), only roots with wr > 0 are admitted, while with the -
sign on (91+92), only roots with w_ < 0 are admitted. Even with this
limitation, Eqs. (2.29) and (2.30) may still give extraneous roots
because they were derived by squaring Eqs. (2.11) and (2.28) to remove
the sign ambiguity in Eq. (2.11). To distinguish these roots, the
dispersion relation must be solved for each admitted root of Eq. (2.29)
or Eq. (2.30) to give k" and kX separately, identifying them by the
prescription that kI < 0 and k; >0 for wi <CGO. Only those roots
giving (k+ - k_) with the correct sign to satisfy Eq. (2.28) are pfoper
w roots. 4

n -

It is possible to make some general observations about these
normal modes without solving a specific problem. Fbr an w below.the
lowest wa(k real) contcur, i.e., w, <o _, we have (kz - k;) < 0. How-
ever, Eq. (2.28) demands (k: - k;) > 0 since 4n ,pll,pzl < 0, so all
of the wn’s must be on or above the lowest wa(k real) contour. Also,
for lpl,z' # 1, at least one of the roots ki- must, in general,
correspond to a spatially amplifying wave. For perfect reflections,

'Pll = |02' = 1, so the spatial growth rate of the amplifying wave equals
the spatial damping rate of the attenuated wave. For a symmetric medium
(D(w,k) even in k), Eq. (2.28) can be satisfied by purely real ki, for
perfect reflections. '

In order to find the more_detailed loci of the wn's‘as the
reflection coefficients are varied, consider the solutions to D(w,k) = 0

for small changes in w and k, i.e., w and 5k, about some solution
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(wl’kl)' These parameters are related. by

dw
5% = VGl , ‘ (2.31)
where VGl = dw/dk|w K is the generalized group velocity, usually
H

defined for simply propagating waves when w and Kk are purely real.

Using Eq. (2.31), we find for the normal modes

6! - k) =8uw Re <i+ - Vi_> , (2.32)
. ni o \Vg G/ |

where éwni is the change in the growth (or damping) rate of the normal
mode. From Eq. (2.28), we see that an incremental decrease in the
magnitude of the reflection coefficients gives 5(kI - k;) > 0. Thus,

the corresponding sign of 6wﬁi depends on the sign of Re(l/vG+ - l/vG—).
In general, for the waves studied in Sections 4 and 5, we have

Re(l/vG+ - 1/VG_) > 0, so the effect of decreasing lolllpz!'is to damp
the normal modes.

Some of these results are illustrated in Fig. 2.8, where the
location of various branch points (ws and wn's) are shown in the w-plane
for a symmetric medium with Re(l/v&' - l/vé-) > O.. Note that in general,

. for low loss reflections, it is possible to have an wn lower than ws,
except in the special case when ws is the lowest point on the wa(k real)
contour. As the reflections are made moré lossy, the normal mode
frequencies will migrate upward, eventually leaving ws as the lowest
branch point. If ws is in the lower half plane, the natural response
will eventually grow in time, due either to a normal mode at wn or an
absolute instability at ws, depending on the reflection coefficients.

If, on the other hand, ws is in the upper half plane, but the wa(k real)
contour still extends below the real waxis (as for a convective
instability), we may find a decaying or a growing natural response,
depending on whether or not the reflections are lossy enough to move all

of the wn's into the upper half plane.
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It should be noted that if a medium supports two waves
which, in some parameter range, have Re(l/vG+ - l/VG-) <0, an
incremental increase in the reflection losses will have a destabilizing
effect on the normal modes. For nearly lossless media, such a change in
the sign of Re(l/vG+ - 1/VG—) may occur when one or both of the waves
have negative small signal energy.55 The destabilizing effect of loss
is then analogous to that found in a resistive-wall amplifier.56 of
course, any such system would have to comply with the model used in
this section. However, we shall not pursue such a study here. 1In any

'

event, as mentioned earlier, all of the wn s must still be above the

lowest wa(k real) contour.

2.2.4 Forced Response

In the last subsection, we found that if all the normal mode
frequencies, wn, and the branch point, ws, are in the upper half w—plane,
the natural response of the bounded system will eventually decay. For
this case, the forced response of the system to a localized sinusoidal
source may be considered. We again take fo(t) = exp iwot for t >0,
where wo is real, as shown in Section 2.1.3. 1Its Laplace transform
is fo(w) = [i(w—wo)]_l. In studying the natural response, the source
was taken at z = 0 since the form of the asymptotic natural response
is not dependent on the source position, as shown in Appendix A. How-
ever, the form of the forced response is dependent on the source position,

so we use the result of Appendix A for a localized source at an

arbitrary position, zO, where - L/2 < zO < L/2.v For the sinusoidal
source, this gives the response .
2]
. - x -~ ) L= =
L m+lUO {exp[— ik (z-z )] A(Z)ﬁji exp[—lm(al+azx&
V(t,z) = = - S — exp iut ‘dw, !
~ i k" - k) - wo)

(2.33)

+ , .
where Kk is used for =z >< zO. The other quantities in Eq. (2.33) are

a
1

+ -, b . -
(K - k)G +2z)FO8 +1i /cnlpll , (2.34)

Ql
I

x* - k_)(%'— z)) F O, + i&nlpzl : (2.35)
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and

A(z) = {(14+ exp ial) exp [~ ik_(z—zo)] + (i + exp iaz) exp|- ik+(z—z0)1}:

(2.36)

Note from Eqs. (2.21) and (2.22) that

a +0 =0 +Q |, (2.37)

so Eq. (2.24) may be used to evaluate the infinite series again. As the
LIP of Eq. (2.32) is moved upward to evaluate the asymptotic response,
"the first branch point encountered is at w = wo on the real w-axis,

due to fo(w). The asymptotic response determined by this branch point

is

. —
V(t,z) = {exp[— ik—(z—zo)]+ oxp i?é:iaé) — 1} expigbt (t = o).

w=Ww
0]

(2.38)

The first term of this response is due to the initial wave
propagating away from the source at ZO’ while the second term is due to
the sum of the reflected waves. 1If wo is very close to a normal mode
‘frequency, wn, the second term is very large and can dominate. This is
the usual case in exciting resonant cavities, since their normal mode
or resonant frequencies are nearly on the real w-axis due to very small
reflection losses. On the other hand, certain systems, including many
bounded plasmas, have more lossy boundaries, in which case one must use
both terms in Eq. (2.38) to determine the spatial form of the response.
In the case that the reflections become so lossy as to approximate an
infinite system, the response is given by the first term alone, as one

would also find from Eqs. (2.6) - (2.8) of Section 2.1.

2.2.5 Axial Profiles

In the last several subsections, we have been mainly concerned

with the asymptotic time response of bounded sysfems. However, the
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results we have obtained also contain information on the axial profile
of the asymptotic responée. In this subsection, the axial profiles for
natural and forced responses are compared.

Before giving the axial profile for the natural response, it
should be mentioned that in the case that the natural response grows in
time, the asymptotic amplitude is actually determined by the nonlinear
saturation of the waves, whereas our analysis has been linear. However,
it is often assumed, and observed experimentally, that for weakly
unstable plasmas, the nonlinear steady state is determined by the form
of the linear asymptotic response. Thus, the axial profile should be a
useful check with theory, even for many unstable systems.

Natural response profiles: There are two types of natural

responses to consider. One occurs when the lowest branch point in the
w-plane is at ws, due to the colliding of poles k' and k—, and is

given by Eq. (2.28). For this case, the amplitude has the form

2
IW(Z)I x exp 2 ksiz , (2.39)

while the phase angle of {, x(z), varies as

X(z) « -k =z . (2.40)
sr .

This is just the form the response would take for an infinite system,
so the boundaries have no significant effect. '

The second‘type of response occurs when a normal mode
frequency at wn is the lowest branch point. The natural response is

then given by Eq. (2.27), which yields an axial profile with

|l!J(Z)|2 < lpll exp 2 k".;z + |p2| exp 2 k;z

~ /2, |1/2 - -
+2 ol / ER /2 exp (k] + k )z cos[20 - (k. - k )z] ,

-(2.41)
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[Iplfl/zexp k'z sin @ - k'z) - |p 'l/zexp k. z sin(® + k_z)]
i r 2 i r
tan X(z) « )

1/2 + oy /2 - -
[Ipll exp k.z cos (¢ - krz) + ’Ozl exp kiz_cos(¢ + krz)]

1

(2.42)

where 20 = nn * (61—92)/2. This profile depends not only on the
dispersion relation, but also on the system length and reflection
coefficients. There are some special cases for which these expressions
can be simplified.

Casée 1: The dispersion function, D(w,k), is even in k.

We then have a symmetric medium, so Eq. (2.28) can be written as

~
e
il
~
=
1

1
(2.43)
KL=kKL=-KkKL-= [nn% (91+82)/2]

This reduces Eqs. (2.41) and (2.42) to

H’(z)|2 < l911 exp 2 .kiz + |92| exp(- 2kiz)+ 2|01|1/2|pzll/2cos 2(¢ - er),-

(2.44)

|1/2
/2

'1/2
|1/2

[lpl exp k. z - lpz exp ¢ k.2)]

tan y(z) « tan (@ —'krz). (2.45)

1 .
[lpl’ exp kiz + IDz exp (- kiz)]

Since ki and ki are determined when °1’ 0 L, and n are specified,

. 2’
the mode pattern is now determined purely by the system length and

terminations, and is independent of the form of the infinite dispersion

relation.

Case 2: In addition t6 D(w,k) being even in k, the
terminations are identical. This means !pll = Ipzl = Ipl and 91 = 92
=8, so that @ = nn/2. Equations (2.44) and (2.45) thus become

2 )
|¢(z)' = [cosh 2 kiz + cos(nm - 2k z)]
' r
x cosh [2({n lpl)z/L] + cos [2(nn £ 8) z/L - nx] , (2.46)
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tan X(z) =« tanh kiz tan (Eg - krz)
« - tanh kiz tan[(nn £ 6) z/L - nﬂ/2] . ’ (2.47)

Case 3: 1In addition to the conditions for Cases 1 and 2, the
terminations are lossless. Thus, lpll = lozl = 1, or ki = 0, so Eqgs.

(2.46) and (2.47) reduce to
2 2
[V(2)|° « cos [(an £ 8)z/L - nn/2] (2.48)
x(z) = 0 . ' (2.49)
In this case, the mode patterns are pure standing waves with cosine or

sine forms about the center for n even or odd, respectively.

Forced response profiles: If a system's natural response

eventually decays, we may consider the form of the forced response as
given by Eq. (2.38) for a localized sinusoidal source. The axial profile
is made up of a combination of the initial wave from the source, and the
sum of its reflections from the boundaries. This profile has the
amplitude and phase given by

2 * 2 - F
IW(Z)I < exp 2kiz + ID exp(kz - ki)L exp 2 kiz

2,1

+ -. L + - + -
+ 2|°2,1|eXP(ki ki) - exp(ki + ki)z cos|:262’1 (kr kr)z] s

2
(2.50)
k2 sin(B. T kKiz)-|p. | exp(kt-k)E exp k z sin(B, .tk z)
°xp K, 2,1 “pZ)7IPg (le¥PUK k)5 exp Kz sinlb, (2K,
tan Y (z) < % - ,
ex kiz cos(B, .F kiz)+lp lex (k+—k—)£ ex ﬁ¥z cos (B +kxzu
P X 2,17 “pZ)tPg 1! CXPLK TR )5 exXp X2 2,1 °r
(2.51)
where the upper superscripts and left subscripts are used for =z > z ,
and vice versa for 2z < z . The new constants in these equations are
‘ + -y L + -\ L
2 =(k -k)=F8 = - - =+
62 (k DR o 281 (s - k) gt e1 . (2.52)
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if lpl‘ = ‘pz\ = 0, the system acts as if it‘were infinite,
and we simply have the profile of a k+ wave propagating to the right of
the source, and a kK wave to the left. On the other hand, if wo
(the source frequency) is very close to a normal mode frequéﬁcy, wﬁ,.We

may use the additional condition
+ - ’ . . ) . )
- = * - i , .53
(x"-K )L ~ [2n7 £ (8 +8,)] 1[&nlpll |o2| 1 o (2.53)

" as in'Eq. (2.28). Then Eqs. (2.50) and (2.51) can be reduced to Eqgs.
(2.41) and (2.42) to give the normal mode profile. '

2.2.6 Extension to D(w,k) of Higher Order in k

- Up to this point, we have assumed D(w,k) to be quadratic
in k. When the dispersion relation is of order B > 2 in "k, the

various roots k(w) can all be identified, for wi = - «, as waves

excited on the + or - sides of an excitation point. Often B will
. +
be even, and there will be pairs of roots ' ké(w) corresponding to waves

excited on either side for each wave typé. For instance, for a two
component plasma treated by the first two moment equations, we have

P = 4; there is a pair of pressure waves associated primarily with the
electrons (Langmuir waves), and another pair associated primarily with
the ions (ion-acoustic waves). We then need to define a set of
reflection coefficients, pee, pii’ pief and pei’ for each termination,
to account for the fact that upon reflection a wave of a given type can
excite not only the same type, but also the othef type. In principle,
one could model this situation by again using a series of image sources
to represent the reflections. 1In practice, however, this procedure is
hardly tractable.

Many cases of praétical interest correspond to the situatidn
where one pair of waves is dOminant, and the others are strongiy »
attenuated and excited only very locally to the terminations. Over most
of the system, only the dominant wavés have appreciable amplitude, ahd
may be amplifying or only weakly attenuated. The situation is analogous
to that in ordinary electromagnetic waveguide557‘used in a frequéncy

range where only the lowest transverse eigenmode propagates freely.
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Evanescent higher order transverse eigenmodes are excited locally to the
termination, and the impedance or reflection coefficient for the
dominant mode is measured at a point sufficiently far from the
termination that the evanescent modes are negligible. The locally
excited higher order modes, which are necessary to satisfy the boundary
conditions in a full treatment of the problem via Maxwell's equations,
contribute to the reflection coefficient for the dominant waves.

In the present case, we can combine the effects of the
evanescent modes with those of surface waves, if any, into the reflection
coefficient of the dominant wave. The theory of the previous section is
then applicable as far as Eq. (2.28), which determines (k+ - k-) for
the dominant waves. The only problem that arises is to solve the
dispersion relation for the normal mode frequencies, wn, for the allowed
(k+ - k_) values. It is clear that the problem is determined, but it is
difficult to give a general method when P > 2. 1In practice, however,
there should be no difficulty in solving particular problems either
graphically or numerically.

The reflection coefficients can be determined most simply by
measurements. In Section 2.2.5, we have given the axial wave profile for
both the normal modes and an externally driven system. Since these are
functions of the reflection coefficients, careful measurements of the axial
profile would allow one to determine the reflection coefficient values,

For cases where measurements are not available, the reflection coefficients
must be determined from physical considerations. A combination of these
approaches is used in Section 4., There we illustrate how varying the
reflection coefficients effects the normal mode growth rate and axial

profile for drift waves,
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3. WAVES PROPAGATING PERPENDICULAR Tb,THE MAGNETIC FIELD

In this section, we begin the study of low-frequency instabilities
by investigating waves which propagate pérpendicular to a uniform
magnetic field in an inhomogeneous plasma column. These waves can be
driven unstable by Hall_drifts, i.e., Ex)x’g_drifts, of the electrons
and ions due to a radial electric field. The instabilities belong to a
general class of flute-type instabilities30 which arise when electrons
and ions drift at different speeds. For the analysis of the column,_we
use cylindrical geometry rather than rectangular slab geometry. There
ére two reasons for this: first, the centrifugal force on the ions, “
which arises in cylindrical geometry, can cause instability; second, we
pay particular attention to the lower order azimuthal modes, which are
not, in genéral, localized at some radial position in the column.
Consequently, the waves are described by a differential equation, which
is derived in Section 3.1. Solutions to this equation, as specified by
the boundary conditions for .the column, determine the wave characteristics.

For the case of uniform rotation of the column, the electric field
must be a linear function of radius. The instability which arises is
usually called a centrifugal flute mode, and has been studied, for
example, by Rosenbluth gz.giﬂél ahd by Chen.33 We treat this case in
Section 3.2, and determine the effect of the column. being radially
bounded. If the electric field is other than a linear function of
radius, the column rotation is nonuniform, i.e., there is shear in the
angular rotation velocity. We consider the effect of this shear in
Section 3.3, and illustrate how, for abrupt shear, the instability

resembles a Kelvin-Helmholtz instability.37’38

In Section 3.4, we
proceed to identify some instabilities in a hollow cathode arc discharge

as being of the type discussed here.

3.1 Basic Theory

3.1.1 Steady State Plasma

The model we use is an infinitely long cylindrical plasma
column immersed in a uniform axial magnetic field. The plasma is taken

to be fully ionized with singly charged ions. The model is shown in
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Fig. 3.1 together with the cylindrical coordinate system used. We
assume an arbitrary form for the DC radial electric field, a Gaussian
radial number density profile, and no axial variations. The number

density thus has the form

n(r) = N exp(—rz/rg) . (3.1)

One can extend this model to consider other number density profiles.
However, it is most often the electric field profile which can take on
variousishapes in plasma discharges, while many of the number density
profiles can be approximated by Gaussian curves. Thus, we consider this
case in detail.

The equations used to describe this fully ionized plasma are
two-species moment equations given by Braginskii. For the plasma to
be accurately described by these equations, the particles of the plasma
must be sufficiently localized, so that the plasma acts nearly like a
fluid, the small variation from this state being accounted for by transport
effects included in the theory. For particle motion across the magnetié
field, this localization is provided by the magnetic field, and requires
the Larmor radii of the particles to be small compared to the zero and
first order scale leﬁgths of the physical quantities (density, electric
field, etc.). For particle motion along the'magnetic field, the
localization must be provided by partiéle collisioné, and requires the
mean-free-path to be small compared to the scale lengths of the physical
quantities. This latter condition will be of more concern in Section 4,
when we consider waves propagating at.an angle to the magnetic field, so
that axial variations are important; in this chapter, the equations
describe only variations perpendicular to the magnetic field.

For the ions, we use the continuity equation

on +vl . (n»X'u_) =0 , (3.2)

and the momentum transfer equation with the isothermal assumption

dv,
~ig -
nm, = - Vn-V
i "ot Ti fl N 'EiL + en (E +‘Xil X.g ) . (3.3)
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(a)

nolr)=N exp (-r¥ry?)

AMPLITUDE (arbitrary units)

r/ro

Fig. 3.1 (a) Model of the cylindrical plasma column immersed
in a magnetic field B., showing the coordinate system.
(b) Radial. profiles of number density and electric field in

the column,.
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Here, n is the number density for both ions and electrons, mi is the
ion mass,‘xil is the ion macrogcopic velocity, Ti is the ion temperature
in energy units,’gil is the traceless visgosity tensor, -e 1is the charge
of an electron, E’ is the electric field, and ’E is the magnetic field.
MKS units are implied throughouf. We assume that wci >>‘vii, where

wci is the ion cyclotron frequency and Vii is the ion-ion collision
frequency. Thus, ion-ion collisions are neglected, and the collisionless
viscosity tensor is used in order to account for finite ion Larmor radius

41 . .
effects, as discussed by Chen. The form of this viscosity tensor in

33
cylindrical coordinates is

w w
T rr rf
¥ A
L =g, L ¥= : (3.4)
ci W W
fr GIcE
where the tensor components are
1 dvig/r) OV, y
wrrz_w99=§r—+; !
dr o8
v w 1 . B(Vir/r) 1 BVie
B~ "8r " 2 or r ab ’ 35

Finally, in the analysis to follow, care must be taken to properly

differentiate the unit vectors for cylindrical geometry, i and i
~r

-
Their nonzero derivatives are
31 31
~ZL-1, —=2--1 (3.6)
d 8’ 3 r ' ’

We begin by solving Eq. (3.3) for the zero ordervioh velocity.
First, it is assumed that the inertia and viscosity terms are small

compared to the other terms in Eq. (3.3), which gives the solution

[\
H
[
o
>
>

(3.7)

&
I}
<

o
P
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This approximation is then used to find the correction due to inertia

and viscosity. The result is
2 ’ : / "

v 2 v v : o
0 2 r 0 r 0. . : ‘
= - ' S-S\ =) -3\ .8
10 Vo T e o TP\ T2 <r > 5 <r ) > (3.8)
ci ro _ -

N w

where pi[ = (Ti/mi)l/z/wci} is the ion gyroradius (or Larmor radius),
and the prime denotes differentiation with respect to r. The first
correction term is due to inertia, and represents the centrifugal force,
This always acts radially outward,lso it aids or opposes the force of

the radial electric field, depending on the latter's direction, For this
correction to be small, the rotation frequency (= vo/r) must be much
less than woi Solutions to Eq. (3.3) for larger rotation frequencies
are discussed in Appendix B. The remaining correction terms in Eq. (3.8)
arise from ion viscosity, i.e., from the effect of the finite ion Larmor.
radius; These terms are nonzero when there is rotational shear dué to

an electric field which is other than a linear function of radius, since

.,,' ’ |
\'% E .
0 0 .
(o). (3)

This correction is small if the scale length of the rotational shear,

from Eq. (3.7)

1 A(Vd/r)
(vo/r)

’ (3.10)

is large compared to the ion gyroradius in the sense that
pi
pixr ? <1, (3.11)

and if the rate of change of shear, (vo/r)”, is not too large over a
gyroradius.‘

The equations and analysis for theé electrons are somewhat

simpler due to their smaller mass. We neglect both electron inertia and
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finite Larmor radius effects, since these terms appear in the momentum
transfer equation multiplied by the mass, as seen from Eqs. (3.3) and

(3.4). The continuity equation for the electrons is unaffected by this,

being
@,rv - (n v )=o' (3.12)
ot L ~el ’

while the momentum transfer equation becomes
0==T Vyn=-en(E + vV X B) , (3.13)
e ~ ’\le_L ~s

where the symbols are analogous to those for the ions. We have also

made the isothermal assumption for the elecfrons since, as is proved in
Appendix C, not making this assumption results in exactly the same first
order wave equation as we derive in Section 3.1.2. Equation (3.13) can

be solved to yield the zero order electron velocity

>EB ) (3.14)

We thus have a steady state in which the electron fluid
rotates about the axis at a velocity given by Eq. (3.14), while the ion
fluid rotates at the velocity given by Eq. (3.8). It should be noted
that each drift is made up of a diamagnetic drift term and an EO X,E
drift term; these are the first and second terms, respectively, in
Egqs. (3.7) and (3.14). But only the ,Eo X B drift represents a true
particle drift; the diamagnetic term describes momentum transport due to
a density gradient for particles gyrating about a fixed point. "As we
shall see in Section 3.2.1, the diamagnetic drift cannot produce

instability, while the E X’g drift can. 1In the next section, the

0
perturbation analysis of the equations describing the plasma column is

considered in order to determine the stability of this configuration.
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3.1.2 Perturbed Plasma

To perform a linear perturbation analysis on the equations
describing the plasma, i.e., Egs. (3.2), (3.3), (3.12), and (3.13), we

assume that the variables n,‘xi, ve, and E all have the general form
n(r) = no(r) + nl(r) exp i(wt-mH) , (3.15)

where the subscripts 0 and 1 stand for zero order and first order
quantities, respectively, with n1 << no. Also, w 1is the wave frequency
of the perturbation, which is equivalent to Fourier or Laplace
transforming in time (see Section 2), and m 1is the azimuthal mode
number, which is a positive or negative integef or zero. No axial
variation is assumed since we are considering perturbafibns or waves
which only propagaté, or have spatial variations, perbendicular to the
magnetic field. Before perturbing the equations, it is useful to make
some further assumptions about the waves. We take é << 1, where '

B [= nT/(Bz/ZHO) in MKS units] is the ratio of the particle pressure to

magnetic field pressure. We thus neglect perturbations in the magnetic

field, and assume that the waves are quasistatic, i.e.,‘Ei = - Vlél, where
¢l is the first order potential. In defining the number density,.n,

following Eq. (3.3), it was implied that the ion and electron densities
are equal, even to first order. This is known as the quasineutrality
assumption, and is valid for frequenciés, w, much less than the ion
plasma frequency, wpi' In addition, we take w <K wci’ and, since
wci < wpi for most plasmas of interest, this condition implies that
quasineutrality is well satisfied.

We begin by perturbing the eléctron equations. The first

order electron velocity comes directly from the momentum transfer

equation, Eq. (3.13), and is

T . .
e im =2 =, =
Je1l = E(r >’£r+5 33) ! (3.16)

where £ = (nl/n0 - eﬁl/Te). If this relation is substituted in the

first order continuity equation, Eq. (3.12), we obtain
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m Te (F1) (. Fo) (M 3.17)
2 eB\ T /|~ Br ’ :
r e 0

0

which can also be written as

ed w-m w n
1 = E < 1 ) . (3.18)

Ti mcuDi no

Here “Wh4 [= —(2m/r§)(Ti/eB)] is the ion diamagnetic frequency, which
is not a function of radius since the density profile is Gaussian, and
we (= —EO/rB] is the rotation frequency due to the electric field.' Note
that Eq. (3.18) is independent of the electron temperature, so the waves
themselves are not affected by the electron temperature. The physical
reason for this is that the electron temperature only enters the
equations via the pressure term, nTe, of the momentum transfer equation;
This term gives rise to a diamagnetic drift velocity, which describes
momentum transport, but not true particle drift. When the electron
velocity is substituted in the continuity equation, this term cancels
out since it does not describe particle transport. 1In Appendix C, we
prove that the electron temperature cancels out of the continuity
equation to all orders, and also that, despite this, there may be electron
temperature fluctuations associated with the waves. It should be
emphasized that this cancellation does not occur if axial variation is
considered, as for the waves studied in Section 4; nor does it occur for
the ions, since we include ion inertia and viscosity. Another simplifica-
tion arises in that Eq. (3.18) contains no derivatives, and thus gives
the relationship between the pofential perturbation and the density
perturbation directly, once the frequency w is known. The calculation
of this frequency is, of course, one of our objectives. To obtain a
second relation between nl and ¢1, we consider the ion equations.

As for the zero order ion velocity, the first order ion
velocity is solved by iteration of Eq. (3.3). We use the zero order
momentum transfer equation, multiplied by nl/no, to simplify the first

order equation, which amounts to using the equality
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17i
- v - : X
m2 W0 " V%0 oy, * Wo = mCEg * ¥;5,0 X B
T.n T. n
il i 1 ¢ .
- v —_ = - v . 3.19
n 1% 5. 1 (WO l)nO o ( )
0 ci 0

This leads to.the first order ion momentum transfer equation

dv

T
~ill i >
it .y v -t |pv,-
ming |l 5t * Wi D Y0 tWi0 Y W NoV1 ¥
. c
- n <> <y
9 om =WV - (WY | =
Wy Vg ng~0 L% T o TPy | T
nl !
2y -V -v ) .
Ti [no 10, 10y J + noe( l®l +—XiL1-X'§) (3.20)

As a first approximation, we neglect the terms on the left-hand side of

Eg. (3.20) as small, and find

T. . )
1 im 2 ’ 2
~i1l  eB ( r YA Y i@) ’ .21
where nl e¢1 S
Y :(— + —-—-) . . . (3-22)
n T. :
0 i

Using this approximation to find the corrections due to the inertia and

viscosity terms, i;e., the left-hand side of Eq. (3.20), yields

T .
i0 im s RN 1
_ im L ]a .
'XiLl eB [1‘ Yf&'r +Y ,ie] t e . [~i +'4\'2 + AG} : 3 23)
ci
Here -él is due to ion inertia,‘é\l2 is due to zero order viscosity,

and é& is due to first order viscosity. These are given by
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‘39 , ' (3.24)

2 2 '
Y//I . 1 _ 1 "o, 1  m41 Yl +m L_ 1 Yi .
T2 2 Y ) 3 2\ 2" 3/ 18
2r r rr 2r r r r

2
0 0 0

To eliminate the ion velocity variable, we insert Eq; (3.23) into the
continuity equation, i.e., Eq. (3.2). 1In doing so, Eq. (3.18) is used
to ekpress nl/n0 in terms of Y, as defined in Eq. (3.22). This leads
to a second order differential equation in Y, which is less lengthy
than one might expect from Eq. (3.23), as a large number of terms cancel

out, including the third order derivatives of Y. Thé equation is

" 1 2r 2 lewE ’ m2
Y  +|l=-—=]-m - —=Y +
r 2 W, W 2
.r 12 r
0 .
(w_~w )2 rw.,mw’ mw.
1 2 2 E Di 1 E E
— |- =3 m(2wE-mD3 + m + +
1 r w ) w rw
0 2 2 2
2w, mw. W, mw. W (mw’)2 '
b1
R ) y=0 , (3.25)
rw, w,, Wy,
where wl = w - me and wz = w -‘me + mei. For the case of uniform

: 3
rotation, wé = 0, and this equation reduces to that derived by Chen, 3

59 .
and by Chu EE El" who used the moment equations, while Rosenbluth et
1
21.3 have derived an equivalent equation from kinetic theory. Equation
(3.25) takes on a shorter form, and contains only first derivatives of

W,

£’ if we transform the variable Y to V¥V, where
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¥ - - 1B -— rl (3.26)
! Y2
We then have the differential equation
3 or , (w = me + me_/z)
W” + 2 _ _2 - zme/ 1 w/
r Cw,Ww
ry 12
| mP-1 L2 w? v _ o (3.27)
2 ‘r2 w )
o 1“2

This agrees with the equation for nonuniform rotation derived by‘
Rosenbluth and Simon?6 when the density profile is assumed Gaussian as
in our model. They used a special set of moment equations obtained
directly from kinetic theory, while we have derived the equation using
the more conventional moment equations.

Now that we have the basic differential equation for the
waves, the problem becomes one of solving it for the eigenfrequencies,
w, and the eigenfunctions, ¥, and thqs n1 and ¢1 by Eqé. (3.18) and
(3.26). A symmetry property of Eq. (3.27) which is useful to note is
that if a given set of parameters yields an eigenfrequency w and an
eigenfunction V¥, then by changing w

E
%
eigenfrequency -w for the eigenfunction Wf where the * denotes the

to (uy,-wp), we obtain the
complex conjugate. This can be proved by making the substitution of

uh *(wDi—wE) in Eq. (3.27), .and then taking the complex conjugate of the
equation. The asymmetry of the transformation with respect to the
approximate total ion rotation'frequency, (wE-wDi), can be traced back
to the Coriolis force which arises from the first order inertia term in
cylindrical geometry, as discussed by Chen.33 Note also that there are
complex conjugate solutions to the'equation, i.e., if w 1s an eigen-
frequency for the eigenfunction V¥, then w* is an eigenfrequency for
the eigenfunction Y*. We have assumed an exp iwt time'dependence, so
the.waves are unstable for wi <0, where» Qi = Im(w). Thus, since both

% R .
w and w are solutions, there is stability only if w 1is real.
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Befofe we can find explicit solutions to Eq. (3.27), two
boﬁndary conditions must be specified. Since the equation has a regular
singularity at the origin, we use the ndnsingular solution, and thus need
only the boundary condition at the outer radial boundary, say at r = ry:
When rb is not infinite, we take this to be ¢1(rb) = 0. This can be
justified on physical grounds when the plasma column is enclosed by a
conducting cylinder, or when a conducting ring of radius rb is placed
at one end of the column, e.g., an aperture limiter in a Q-machine,
since the conductivity of the plasma along the magnetic field is much
larger than across the field. By Eq. (3.18), ®l(rb) = 0 also demands
nl(rb) = 0, while Eq. (3.26) gives the boundary condition in the
variable ¥, i.e., Y(rb) = 0. PFor the case r, = ©  the boundary
condition is more involved, and is discussed in the next subsection.

We now consider the behavior of these wéves by solving Eq.
(3.27) for uniform rotation, for which analytic solutions are obtained,

and then for the more general case of nonuniform rotation, for which

the equation must be solved numerically.

3.2 Waves for Uniform Rotation

3.2.1 Solutions for Radially Unbounded Columns

For uniform rotation, wE = constant, which implies that the

electric field, E is a linear function of radius._ For this case, it

0,
is convenient to transform Eq. (3.27) by the following change of

variables:31
r 2 1 X :
X ={— . Y(r) = = exp(—) M(X) . (3.28)
r X 2
0
61
We then obtain Whittaker's equation
2 2
1-
E—g +< - % + ; + 4§~ M=20 , (3.29)
dXx 4x
where
wz
h=1- 5 {(3.30)
2w1w2

and 4 = m/2. The nonsingular solution to this equation can be written as
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e 1

2 1 ' '
Mh,L(x) =X A exp (- g).M(ﬂ - h + 3! 1 + 2¢0,X) , (3.31)

where MA@ - h + 1/2, 1 + 24,X) is the cénfluent‘hybergeométricrfunqtioﬁ
known as Kummer's function. - ' B A

In previous studies of these waves, the normal modes are
defined as those for which Mh’L(X)- decreases like exﬁ(—X/Z) as

. 31,33,36,59
m-

X - It should be noted from Eqs. (3.26) and (3.28) that

¢1 does not decrease as r — ® for this case, but rather is a constant“
or increases as some power of r. However, we shall see in Section
3.2.2 that these modes iﬁdeed give the asymptotic behavior of the normal
modes of a bounded column as rb - . The form of ¢1 for rb -+
results from the model being of an unbounded, uniformly rotating plasma
column, as discussed by Chu EE 3}.59 We thus proceed to investigate |
these normal modes. For Mh,é(x) to decay exponentially at large
values of X, the power series representing Kummer's function must be
terminated after a finite number of terms, as determined by the radial

mode number.33 This condition can be written as
h=2+q+35 , (3.32)
where q = 0,1,2, ... 1is the radial mode number. Using the definition

for 4(= m/2), Eq. (3.32) can be put in a more standard form if we let

h=2p-1, in which case we obtain the condition
P =m+ 2q . (3.33)

The set (m,q) denotes the azimuthal and radial mode numbers for a specific
mode, which now directly specify p. The equation for the eigenfrequency

thus becomes

p = 1 - - s (3 .34)

which yields the solutions
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2 2 X
(wE—wDi/2) - wai/4 2

[V
w = mluy, - —gi)(l - %) 1+ i . (3.35)

2
(wE—wDi/z) (p-1)

The symmetry of the solutions discussed in Section 3.1.2 is
apparent. The transformation wE‘*(wDi—wE) leads to an eigenfrequency
having the same growth rate, but the negative of the real frequency, wr,
of the original mode. The negative real frequency is interpreted
physically as a mode whose phase velocity is in the opposite direction
to the positive frequency mode. Equivalently, we may assumg wr to
always be positive and the azimuthal mode number, m, to take on the
negative sign. The magnitude of W, is determined by the factor
m(wE—wDi/Z), and; for large electric fields, is determined by the
'EO X B rotation, i.e., W+

For the (1,0) mode, we have p = 1, which gives the solution
w = 0; that is, this mode is always stable. For all other modes, the
waves are unstable if the radicand in Eq. (3.35) is positive, which
requires

e ot

(3.36)

D~

>

£
N

Di

Since p > 1 for these modes, the rotation due to the electric field
must be sufficiently large to overcome finite Larmor radius stabilization,
as manifested by the right-hand side of Eq. (3.36). Thus, as p
increases for the higher order ézimuthal and radial modes, increasingly
‘large electric fields are required for instability.

The basic mechanism which drives these waves unstable is the
charge separation caused by the difference in the ion and electron
EO X’g drifts due to ion inertia. This is explained from a patrticle
orbit point of view by Rosenbluth and L.ongmire,3O who use a gravity term
in rectangular geometry, which simulates inertial effects of a rotating
plasma or curvature of magnetic field lines. The inertial effect appears
in Eq. (3.8) for the ion velocity as the correction term vs/rwciL This
term can be traced through to the final differential equation, i.e.,

-Eq. (3.25) or Eq; (3.27). However, it is identified most easily in
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2, 2 2
Eq. (3.25), since vo/r = (wE-wDi) , and this term is seen to be the

last term in Eq. (3.25) when-.wé'= w;.= 0. 1If we neglect this term,
the eigenfrequencies become - ' '
-2 .

w = mwp + m £f2§—~fgl ‘, S (3.37)
which are always real. As p becomes,large.for higher order modes,
these waves correspond to perturbations being coﬁvected around the
column at the »EO X B velocity. Clearly, the inertial effect of the
ions is needed for instability.

The waves also need a density gradient for insfability.
This may be shown by letting r, - ®, so that the density becomes
uniform. Initially, we assume that the waves go to zero at a large,
but finite radius, such that ry < ry: The condition now put on the
constant p for Kummer's function to go to zero at ry for the first
radial mode 1533

p = (l+m)(% + ;—') y (3.38)
b

where X, = (rb/ro)z. Thus, as r_— o, we have 1 Xb -~ ® and p — o,

0
which is also true for higher order radial modes. From Eg. (3.35), we

find that in this limit

we=mle, *w ) , - (3.39)

and all the modes are stable. It should be emphasized that 'rb is
considered to be very large, and that Xb -+ o only because we take
rO —+ o faster than rb —+ o, The different behavior of p seen in
Eqs. (3.33) and (3.38) will become clear in the next subsection.

3.2.2 Solutions for Radially Bounded Columns

We now consider in more detail the solutions to Eq. (3.29)
and the eigenfrequencies given by Eq. (3.35). In particular, we shall
use the more realistic model of é radialiy boundéd plasma column. For
rectangular geometry, Leli'nert62 has found that the presence of a .
boundary can have a stabilizing effect on this type of instability. 1In

6
addition, for cylindrical geometry, Chen has shown from numerical -
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solutions to Eq. (3.29) fqr the special case of rb =J/2 r0 that the
eigenfrequencies obtained can be quite différent from those found for

an unbounded column. Most dramatic is the fact that the (1,0) mode can
be unstable for a boundary at this finite radial position. We

consider 5 more systematic approach to this problem in cylindrical
geometry by extending the analytic determination of the eigenfrequencies
to the case of a bounded column. The behavior of the numerical solutions
obtained by Chen then becomes clear, and the results are generalized to
include the effect of a boundary at any radial position.

The approach is to find the zeroes of Kummer's function for
finite radial boundaries, and relate these to the parameter appearing in
Eq. (3.35). Curves of these functions are available,64 and by writing
the solution [Eq. (3.31)] in the form M[(m—p)/2, 1l+m, X], we may find
the precise value of ﬁ as a function of the position of the outer
radial boundary, measured by Xb[= (rb/ro)z]. We have done this for the
two lowest order radial and azimuthal modes, and compared the results
with the asymptotic value of p given by Eq. (3.33). The results are
shown in Fig. 3.2. The curves approach the asymptotic values of p at
b’ but fof moderate values of Xb 'they can be quite different.

For example, as Xb becomes less than ~ 2-3, p increases quite rapidly

approaching the form given by Eq. (3.38) for the (m,0) modes when

large X

Xb << 1. The actual value of p for any mode is always larger than the

asymptotic value; in particular, p > 1 for the (1,0) mode. Equation

(3.35) thus gives the result that the (1,0) mode can be unstable for a

finite radial boundary, as found numerically by»Chen63 for Xb = 2. In

general, the eigenfrequencies for various radial positions of the

boundary can now be found by using Fig. 3.2 in conjunction with Eq. (3.35).
In using these results, it should be noted that the position

of the boundary also determines which mode will have the highest growth |

rate for a given electric field. By differentiating the expression for

grthh rate [Eq. (3.35)] with respect to p, we find the maximum growth

rate of a mode occurs for
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5 , (3.40)
3 .

1 + 3
- 2
. 4(wE wDi/, )

where the second term in the denominator must be larger than p for
instability, by Eq. (3.36). Thus, the maximum gfowth rate is obtained
for 1 <p < 2. The only mode which can satisfy this condition is the
(1,0) mode, as seen from Fig. 3(2. By substitdting Eq. (3.40) in Eq.

(3.35), we find that the maximum growth rate for this mode is

w (w, - w_.)
ey, = = B DI : (3.41)
i 2

(wg - wDi/z)

These equations also give that I—wi‘ = 'wr| at maximum growth, which
indicates that this is a large grqwth rate. Thus, the (1,0) mode
changes from being stable for an unbounded column to having a possible
growth rate given by Eq. (3.41).for a bounded column. The behavior of
the eigenfrequency for other positions of the radial boundary is
illustrated in Fig. 3.3(a). Here the real frequency and the growth rate

E Di b
is convenient for this and following figures to normalize all

of the (1,0) mode are plotted for w_ = 1.5 w_.. as X is varied. It

frequencies to wDi' These normalized frequencies are denoted by W's,
with the appropriate subscript. The maximum growth rate as given by
Eq. (3.41) is thus —wi 2 0.375. We also see that the real frequency

. rises rapidly for decreasing Xb; it increases nearly four times as the

boundary radius is reduced from X = 6(rb = 2.45r0) to X, = 4(r0»= 2.0r0).

b b
Both Wr and --W.1 tend to zero, the unbounded column solutions, for

large X although —Wi decreases more slowly than Wr.

b’
None of the other modes can satisfy Eq. (3.40) for the
maximum growth rate because their p's are too large. Thus, since p
increases for bounded columns over its value for an unbounded column,
the effect of the boundary is stabilizing. This is in basic agréement

62
with the stabilization found by Lehnert for rectangular geometry, when
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a boundary is introduced. The stabilization for cylindrical geometry

is illustrated in Fig. 3.3(b) for the (2,0) mode with WE = 1.5 again
[note the scale change from Fig, 3.3(a)]. The frequency begins near its
unbounded column value of W = 1,00 - i0.707 at large Xb. As the
boundary radius decreases, the real frequency wr increases, and the
growth rate -Wi decreases, finally going to zero at Xb = 3. Thus,
the (1,0) mode can be more unstable than the (2,0) mode, and all other
modes, say at X, = 3, due to the fact that it is the first mode to go

unstable as Xb bis increased. This can be verified from Eq. (3.36),
and the fact that_the (1,0) mode has the lowest p values (see Fig. 3.2).
On the other hand, for larger Xb’ say Xb = 4, the (2,0) mode is.more
unstable. Thus, in general, one must solve Eq. (3.35) to determine the
relative growth rates of the various modes.

Finally, we illuétrate the effect of varying the magnitude of
the rotation f;equency, WE’ due to the electric field for the (1,0) and

(2,0) modes. The radial boundary is taken at X, £ = 4, which corresponds

to the number density at the boundary being 2% o? the number density on
the axis. From Fig. 3.2, we have p = 1.5 for the (1,0) mode, and
p = 3.1 for the (2,0) mode. These values of p are used in Eq. (3.35)
for the eigenfrequencies. The loci these eigenfrequencies trace in the
W-plane asAWE is varied are shown in'Fig. 3.4, where the complex
conjugate solutions are omitted. Again the symmetry of the eigen-
frequencies with respect to the transformation wE - (1—WE) [or
wp = (wD - wE)] is clearly evident. The stabilization of the modes due
to finite ion Larmor radius effects occurs for small values of IWEI
not satisfying Eq. (3.36); values of WE for marginal stability are
shown on the Wr-axis. The (1,0) mode is more unspable than the (2,0)
mode for small values of IWEI, since it goes unstable first as |WE|
is increased. However, for larger values of IWE], the (2;0) mode
becomes more unstable. This behavior is similar to that found above as
the boundary position parameter, Xb, is increased (see Fig. 3.3).

We have stressed the characteristics of the lower order
modes, (1,0) and (2,0), primarily because they are most affected by the
column being bounded. We see from Eq. (3.35) that the real frequencies

are not strongly affected for p >> 1, which applies for the higher order
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modes, Also, it is the growth rate of the (1,0) mode which is most drama-
tically affected by the boundary, and thié mode is first to go unstable as
IWE, is increased. Since the value of WE rquired for marginal
stability, as given-by Eq. (3.36), depends on pE, the results for the
(2,0) mode, along with Eq. (3.33), should allow one to estimate the
-marginal stability point for higher order modes quite well.

Having considered the behavior of the instabilities for a
uniformly rdtating plasma column, we now consider the case when the

rotation is nonuniform.

3.3 Waves for Nonuniform Rotation

3.3.1 Numerical Procedure

We may still use the basic differential equation derived in
Section 3.1.2, i.e., Eq. (3.27); however, since wE is no longer
constant for nonuniform rotation, the equation must be solved numerically.
The fact that we already have analytic solutions for uniform rotation
with finite boundaries is helpful here, since we may check the validity
of our numerical procedure by solving this special case first.

To solve Eq. (3.27) numerically, we have modified a
predictor-corrector computer program for solving differential equations
to allow complex eigenfunctions. Since the equation is linear and of
second order, the procedure consists of solving a set of two linear first

order differential equations of the form

¥Yi(r) = y@x) , (3.42)
, 3 oy o (w - mon + mei/z)
y (r) = - -5 ) - 2m w! y(r)
W w
r 12
0
2 2 )
R =¥ (3.43)
r I‘O 12 :

which are equivalent to Eq. (3.27).
We know that Eq. (3.27) has a regular singularity at the

origin, so care must be taken to eliminate the singular solution from
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our procedure, i.e., to satisfy the boundary condition at the origin.

To do this, we find the form of the nonsingular solution near the origin

- 65
by expanding the equation about this point by the method of Frobenius.
The solution is assumed to have the form ‘ ’

¥(r) = 2 a r ¥ (3.44)

n:O n

where j 1is to be determined. This solution is used in Eq. (3.27), and
coefficients of like powers of r are grouped together. We find that

in order to satisfy this equation, j must take on one of the two values

j=-1%m .  (3.45)

For m=21 , the minus sign corresponds to the singular solution, so

the nonsingular solution has the form

Y(r) ~ a, ML (3.46)
near the origin. Thus, we begin the numerical integration of Egs. (3.42)
and (3.43) very close to the origin, specifying the initial conditions

in the ratio required by Eq. (3.46), i.e., -

v/ (r) _m-1
Y(r) ~ r

(3.47)

The full procedure, .then, is to choose an eigenfrequency, w,
and integrate the differential equation outward. We also integrate the
equation inward from the outer boundary, assuming Y(rb) = 0 and any
finite value of Y'(rb) as starting values. The values of Y'/Y
obtained from each integration are compared at some intermediate position.
If they agree, we have chosen a proper eigenfrequency, and also have
computed the eigenfunction. If they do not agree, we must choose
another eigenfrequency. An interpolation procedure is then used to

converge to a proper eigenfrequency.
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3.3.2 gSolutions for Gradual Shear
The first case we consider is a gradual shear in the
rotation frequency, WE, due to the electric field. We take the form
W = 2.0 +'s(4£ - 1.0) , (3.48)
E ro
where s assumes various values. This is shown in Fig. 3.5, where the
radial bqundary is taken at Xb = 4. This form for the profile of WE
is used to illustrate the effect of deviations from uniform rotation as
might be encountered in experimental devices. For s = 0, we have
uniform rotation, so that the electric field is a linear function of:
radius. As S becomes negative, the electric field becomes larger
close to the origin, but decreases toward the outer boundary, rb, and
becomes negative there for large -s. It is this case which has the
most dramatic effect on the eigenfrequencies, so we study it in detail.
Again we stress the similarities and differences of the éharcteristics
of the lowest order (1,0) mode and the higher order modes as illustrated

by the (2,0) mode.

. : ]
© [

r/ro

[\

Fig. 3.5 Rotation frequency profile, WE , due to the electric

field. as given bv Ea. (3.48). _ . .
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In Figs. 3.6 and 3.7, we show the loci of the eigenfrequencies
in the W-plane for these two modes as ls is vafied, and compare them to the
loci for uﬁiiorm rotation, when WE takes on varioqs’constant values (see
Fig. 3.4 for reference). The response of the two modes to the non-
uniform rotation is quite different. The (1,0) mode (Fig. 3.6) has
eigenfrequencies which change very rapidly as s becomes negative;
the real part of the frequency becomes negative, corresponding to an
m = -1 mode, when only a small outer region of the column has 'a negative
WE. In this connection, it should be noted from Eq. (3.7) that the total
ion rotation frequency is -~ (WE—l)- There is a region between s ~ -1.7
and s =~ -2.1 for which the eigenfrequency appears to become real,
corresponding to stabilization. However, one is then faced with a

second singularity in Eq. (3.27) at the position where (= w-mw +me).

) E
becomes zero, and possibly a third where wl'(= w~mw_) becomes zero.

Nunmerically, we could not find solutions between s:i -1.7 and
s~ —-2.1, either on the real W-axis, or off it. Physically, we can
argue that either the solutions are nonexistent in this region, i.e.,
there are ho nonsingular eigenfunctions, or that the waves are stable
(W real), and the singularities of the equation prevented us from
finding numerical solutions. The stability of the plasma is not
affected in either case. Another possibility is that the solutions
continue into the upper half W~plane. Thisis not likely for two
reasons: first, there should then be no singularities making numerical
'solutioné unattainable; second, there are complex conjugate solutions,
which would mean thé plasma column is actually unstable between s~ -1.7
and s a -2.1. This is not a very reasonable result in view of the
" finite Laimor fadius stabilization for uniform rotation. For s > O,
the results are less interesting, as the main‘effeét is to increase the
growth rate and real frequency. The results for both s <0 and s >0
can be understood in terms of the éigenfrequency of this mode being very
sensitive to,'and ﬁrimarily determined by, the rotation of the outer
portion of %he column.

Constrasted with the behavior of the (1,0) mode is that of the

(2,0) mode, as shown in Fig. 3.7. As $ takes on negative values, the
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eigenfrequency changes quite slowly, and remains weil into the right
half plane. The growth rate of the mode is reduced, but it remains
unstable for the values of s considered. The effect of having s > 0
is similar to that for the (1,0) mode, in that it increases the growth
rate and real frequency, although the effect on the growth rate is not
aé strong.

The general behavior shown by these modes can be deduced
from approximate solutions based on quadratic forms, as given by
Perkins and Jassby.38 However, direct comparison with the solutions
is not quantitatively useful due to some ill-defined quantities in
their theory. Further, the use of quadratic forms depends on the
shapes of the eigenfunctions, which are not given by the theory and must
be guessed. Our solutions, on the other hand, do give the eigenfunctions.

It is interesting to compare the changes in the eigenfunctions
of the (1,0) and (2,0) modes as s is varied. These are shown in Figs.
3.8 and 3.9 for the case of uniform rotation (s = 0), and for nonuniform
rotation with s = -2.5 see Eq. (3.48) . We plot the wave variables of
experimental interest, e(bl/Ti and nl/no, showing their relative
amplitudes and phases. The behavior of Y can be found from the plot
of nl/nO since, from Eqs. (3.18) and (3.26),

n

¥Y(r) «% (3.49)

S

For uniform rotation, note that both modes have significant amplitudes
throughout the bounded region. However, the (2,0) mode is somewhat more
concentrated toward the outer boundary, a trend which continues with
higher order m modes, as shown numerically by Chen?4 This is
consistent with the fact that Y varies as r near the origin as
shown in Eq. (3.46). Once the eigenfrequency, W, is known, the relative
phase shift between e¢1/Ti and ril/nO can be calculated directly from
Eq. (3.18), since the eigenfunctions have no phase shift radially for
uniform rotation. Tﬁe relative phase shift is quite large, ~ 1800, for
this mode. ‘

For nonuniform rotation (s = ~2.5), the most significant

effect is the Tocalization of the eigenfunction for the (2,0) mode, while
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the (1,0) mode remains quite spread out. This can be understood
physically as follows. The shear in the rotation frequency means that
the wave cannot remain-in phase radially as it propagates azimuthally,
This effect is accentuated for highér .m 'humbérs due-fo thq,faﬁt that‘
they have increasingly rapid azimuthal'phdse variations.  It’iS juSt' -
this type of localization for higher'order modes which allows us to use
rectangular slab geometry in Section 4 to discuss drift waves. We
would not expect this approximation to work well for m = 1 modes,
however. This has been confirmed experimentally for drift waves.43

Also note the sizeable radial phase shifts which now appear for the
eigenfunction. These provide a convenient parameter for comparison
between theory and experiment, as we shall see in Section 3.4. Finally,
the eigenfunction nl/n0 for the (1,0) mode has quite a sharp variation
near r = l.SrO. Since the eigenfrequency for this case is quite close
to the Wr—axis (see Fig. 3.6), it illustrates the numerical difficulties
experienced as the Wr—axis is approached, in that the eigenfunction
appears to be becoming singular. ’

3.3.3 Solutions for Abrupt Shear

We consider the effects of abrupt shear by allowing WE to

take on the form

= - < .
Wo=2-a (r/rO 1.2) ,
W, = Sa(r/ro -1.4)+2 (Q.2% r/ro < 1.4) ,-
= 2 z 1. . .5
W (r/ro 1.4) | (3.50)

A set of these profiles is shown in Fig. 3.10, where a 1is allowed to
take on various values, and the radial boundary is at Xb = 4. For
a = 0, we have uniform rotation, while, as a increases, the shear

becomes more abrupt.
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Fig. 3.10 Rotation frequency profile, WE , due to the electric

fieid, as given by Eq. (3.50).

The loci of the eigenfrequencies of the (1,0) mode and (2,0)
mode as a is varied are shown by the full lines in Figs. 3.1l and
3.12, respectively. Also shown for comparison are the loci for uniform
rotation as WE is varied (dashed line) and the loci for the profile
given by Eq. (3.50), but with the zero order ion inertia or centrifugal
force term neglected in the differential equation (chain-dot line). The
effect of neglecting the centrifugal force term was discussed in '
Section 3.2.1 for uniform rotation, where Eq. (3.37) gives the real
eigenfrequencies which result. Again, the centrifugal force term is
more easily identified in Eq. (3.25), where it is the (mE-wDi)2 tern,
than in Eq. (3.27). The solutions in Fig. 3.11 for the (1,0) mode show

that the various profiles of W have very little effect on the eigen-

frequency. The solutions when fhe centrifugal force effect is neglected
show that the shear can cause instability for the (1,0) mode, but there
is no apparent correlation between the two curves. Thus, for this mode,
it is necessary to solve the full differential equation, including the
centrifugal force effect. As for gradual shear, the behavior of the

solution can be explained as the eigenfrequency being primarily determined

by the rotation of the outer portion of the column.
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Fig, 3.11 Locus of the eigenfrequency of the (1,0) mode
with Xb = 4, A , as a 1is varied in Eq. (3.50);

for uniform rotation.

, with centrifugal effect neglected; ---- ,

The behavior of the (2,0) mode, as shown in Fig. 3.12, is

quite different from that of the (1,0) mode. As the profile of WE

changes from uniform rotation, the growth rate of the (2,0) mode begins

to decrease, but then, for a > 1.0,

it increases.

In comparing this

with the solution when the centrifugal force effect is neglected, it is

seen that the curves are very similar for large

shears. Thus, the

increase in the growth rate seems associated with the velocity shear-

rather than the centrifugal force.

become more like a Kelvin-Helmholtz instability. -

In this respect,

the instability has

37,38 .
The curves in

Fig. 3.12 illustrate the transition from centrifugal instability for

uniform rotation (a
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shear (say a = 2). The behavior of the (2,0) mode is representative
of the higher order azimuthal modes which can also exhibit Kelvin-Helm~
holtz type instability.37’38 ) ‘

The forms of the eigenfunctions of the (1,0) and (2,0) modes -
for abrupt shear are shown in Fig. 3.13. They correspond to a = 2 for :
the WE profile in Fig. 3.10. Despite the different behavior of the
eigenfrequencies for the two modes, their eigenfunctions are quite
similar. The shear has little effect on nl/no, while it has a pronounced
effect on e¢1/Ti. These eigenfunctions may be compared with those
shown in Figs. 3.8 and 3.9 for uniform rotation (a = 0), and for gradual
shear. 1In the latter case, both nl/po and e¢l/Ti are significantly
affected by the shear. It should be noted that, by Eq. (3.49), Y is
nearly constant through the shear region for abrupt shear since nl/n0
is nearly constant in this region. This is a basic assumption used in
several approximate analyses of the Kelvin—Helmhdltz instability, one
by Kent et Ei"37 and the other by Perkins and Jassby.38

In conclusion, we emphasize that the solutions'fohnd in this
and the previous subsections, for the profileé_of WE shown in Figs.

3.5 and 3.10, also give solutions for theﬁpiofiles 1 - WE). This is
due to the symmetry property of Eq. (3.27), as mentioned in Section
3.1.2. The new eigenfrequencies are —W*, and the eigenfunctions are
Y*. This is a'particularly useful result, since it doubles the number

of profiles of WE for which we have numerical solutions.

3.4 Comparison with Hollow Cathode Arc Experiment

3.4.1 Experimental Measurements

V We now turn to use the results of the earlier parts of this
section to explain some experimental measurements of low-frequency
instabilities in a plasma diécharge; The experimentaivresulfs'have been
obtained by D. B. Ilic, at Stanford University, on a hollow cafhode arc
discharge of the type described by Lidsky et 3}.66 The details of the
experiment are available in a recent report.67' To summarize, a cylinﬁrical
discharge tube of 10 cm diameter pyrex glass is immersed in an axial
magnetic field uniform to *2% over one meter and variable.to 2.5 kG. The

discharge itself is produced between a cathode of 3 mm diameter tungsten
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tubing impregnated with barium-oxide, and a 2.5 cm diameter copper anode,
at opposite ends of the discharge tube. The discharge runs at a voltage
of ~ 50V and a current of ~ 10 A. The argon plasma produced has a peak
density of ~ 1013 particles/cm3 andAén electfoh temperature of ~ 5 ev at
a background pressure of ~ 1 X 10_4 Torr. At this pressure, the plasma -
can be taken to be fully ionized with singly charged ions, Langmuir
probe measurements of plasma density and électron temperature show that
both decrease radially. The density profile can be approximated by é
Gaussian profile, while, as we saw in Section 3.1.2, the variation of
electron temperature is not of direct importance to the waves being
studied. However, we shall see below that this témperature variation is
-needed in order to calculate the DC radial electric field in the plasma,.
The profile of the radial electric field can be changed by
varying the potential on a hollow'copper cylindef, which comes in
contact with the plasma since it is located just inside the discharge
tube at the cathode end. This copper cylinder is also used as an anode
when igniting the discharge, and is thus known as the starting anode. As
the electric field profile is changed in this manner, two separate low-
frequency instabilities can develop: one is an m = 1 mode at a frequency
of ~ 9 kHz, which appears when the starting anode is left floating; the
other is an m = -1 mode at ~ 7 kHz, which appears when the starting
anode is grounded to the cathode. The starting anode assumes a voltage of
~ 50 V when left floating, and, for a range of starting anode potentials
between this value and O V (grounded), both modes are stabilized. There
is no axial variation detected for either mode, and the ion cyclotron
frequency has a value fci = 50 kHz (B = 1.3 kG). The measured radial

eigenfunctions of density, and potential, ®1, for these modes are

n )
shown in Figs. 3.14 and 3.15% The potentidl measurements were obtained
from an electrically floating Langmuir probe, while the density was obtained
from measurements of the ion saturation current to the probe., We shall
compare these measurements with theory in Section 3.4.2, but first the
form of the electric field profile needs to be détermined for each mode.

To find the electric field, we must correct the measured

floating potential, ¢f’ as obtained from the Langmuir probe, in order to

. . . 68
obtain the space potential, ¢S. The standard procedure is to take
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® =9 +c—Z—, (3.51)

where Te/e is the electron temperature in volts, and ¢ is a constant.
Thus, the form of the electron temperature profile affects the electric
field E [= d®s/dr]. There is no precise value calculated for the
constant ¢ in Eq. (3.51), although a value of around 4 is often taken.
We have taken values of ¢ = 4 and c¢ = 2, and compared the results in
Fig. 3.16, where -E/r is plotted as a function of radius. The quantity
—E/r’ is used since a negative electric field corresponds to an EO X’g
velocity in the right-hand sense. It should be stressed that these curves

" should be considered only approximate, as they depend quite sensitively
on the electron temperature measurements and the validity of the probe
theory. We have not attempted to extend the determination of the
electric field to very near the axis, as there are large gradients in
temperature and potential, and the measurements are less certain there.
From the approximate profiles in Fig. 3.16, we see that, for the m =1
mode, the electric field is mostly negative, and varies rapidly in a
region about half-way to the wall. On the other hand, for the m = -1
mode, the electric field is positive and smaller, and does not have any
rapid variations.

3.4.2 Comparison between Theory and Experiment

Comparison between theory and experiment is complicated by
the difficulty of obtaining reliable measurements of the electric field,
as mentioned in Section 3.4.1. However, the measurements are consistent
as to the basic forms of the electric field, and using approximations to
them,we can explain both the m =1 and m = -1 instabilities observed
experimentally, including good correlations between measured and computed
eigenfunctions of density and potential.

The instabilities can be explained by referring to the
wave solutions for uniform rotation in Section 5.2.2. For a negative

electric field, the rotation of the column due to the E0 X B drift is

positive, i.e., in the right-hand sense, and, for a large enough rotation
to overcome finite ion Larmor radius stabilization, the column becomes

unstable in the m = 1 mode (see Fig. 3.4). This is what is observed

when the start}ngignode is left floating,-and—theradial &lectric field

e
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is negative. As the potential of the starting anode is lowered, the

m = 1 mode stabilizes, as one would expect from finite ion Larmor
radius effects as the electric field decreases (see Fig. 3.4). When the
starting anode potential is depressed further, the sign of the electric
field becomes positive, in which case the m = -1 mode should become
unstable, which is observed experimentally. It should be stressed that
the electric field strength required to make the m = -1 mode unstable
is much less than that required to make the m = 1 mode unstable. This
can be seen clearly from Fig. 3.4 or Eq. (3.36).

To compare the theory and experiment in more detail, .we have
computed the eigenfunctions of density and potential as described in
Section 3.3.1. The experimental parameters used in this calculation
include ry = 5 e¢m, a GausSian number density profile with ry = 2.2 cm,
and an ion temperature of 3 eV. The density profile is a good
approximation to the measured data, and, although the ion temperature
was not directly measured, there has been experimental evidence for
values of this order.69 The possible origin of this large ion temperature
is discussed later in this subsection. Due to uncertainty in the electric
field measurements, the choice of the electric field profile used in the
calculation is guided by the shape of the experimental curves in Fig.
3.16, and the profile which gives the best agreement between the
theoretical and experimental eigenfunctions. The profiles selected
are shown in Fig, 3.17. For reference, the initial slope of the
electric field for the m = 1 mode of Fig. 3.17 is 4 v/cm2

The computed eigenfunctions for the perturbed potential, ¢1,
and perturbed density, nl, for the m = 1 mode are shown in Fig. 3.18.
They are to be compared to the measured eigenfunctions shown in Fig.
3.14. The forms of the two sets of curves are very similar. The
potential amplitude has a two-humped profilé for both the theoretical
and the experimental curves, the inner maximum being larger. There is
also a large phase shift associated with the minimum in the potential
curve. Given that nl/nO varies slowly with radius [Figs. 3.1 and
3.18(b) ], we can see from Eq. (3.18) that the potential profiles are
controlled by the value of (w—wEo. Thus, the minimum in |¢1|, and the

large phase shift, occur where (w—wE) has a minimum. There is also
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good agreement with the profile of n,. It has a single maximum close
to the center of the column and a gradual phase shift near the outer

boundary. The phase shift between. n and ¢1 is in fair agreement

1
with theory, the theoretical value being about 25% higher than the
experimental value. The computed eigenfrequency is w= (0.18 - i O.24)wDi,
which givee a real frequency of ~ 3 kHz as compared to an observed

value of ~ 9 kHz. However, as we saw in Section 3.2.2, the position of
the radial boundary has a strong influence on the frequency of the

m ='1 mode (see Fig. 3.3). Also, from the solutions in Section 3.3, it

is apparent that the frequency of this mode is sensitive to the value of
the electric field near the other radial boundary, a parameter which

could not be measured accurately. Thus, we do not consider the frequency
discrepancy -as serious.

For the m = -1 mode, a small, positive electric field will
cause instability, which is indeed the type of profile observed for this
mode. The electric field profile taken for the m = -1 mode, shown in
Fig. 3.17, implies nearly uniform rotation. Thus, increasing the
magnitude of WE has only a small effect on the eigenfunctions, as can
be seen from the solutions in Section 3.2.2. The other experimental
parameters are the same as for the m =1 mode. The computed eigen-
functions are shown in Fig. 3.19, and should be compared with the
experimental curves of Fig. 3.15. In contrast to the m = 1 mode, both
the experimental and theoretical potential profiles now have a single
maximum located nearer the outer boundary. The phase shift is more
spread out, and can again be attributed to the behavior of (w—wE), as
seen from Eq. (3.18). The density fluctuation has its maximum amplitude
nearer the center, with only a gradual phase shift radially. The phase
shift between nl and‘ ¢1 is only about half of that measured. The
computed éigenfrequency is w= (-0.10 - i 0.05)wDi} which gives a real
frequency of ~ 2 kHz compared to an-observed value of ~ 7 kHz. This
is consistent with the low value of frequency calculated for the m = i
mode as discussed above. \

From these results, it is seen that theetheory*of this
section can reproduce the salient features of the two instabilities

observed in the HCD. The discrepancies between the theory and the
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‘experiment are in the precise values of certain quantities,
particularly frequency and phase shift, rather than the qualitative
behavior of the instabilifies. In part, this méy be dqe to the fact
that the instabilities measured}aré noﬁlinearly séturatéd;'while;the
theory considers only linear effects; In addition, aAstfong radidl
electric field (up to ~ 10 V/cm) is present in the experiment; for
the parameters of the experiment, this implies thaf the Agovxlg velocity"
is of the order of the ion thermal velocity. Thus, thé ionsvdo;not act a
strictly like a guiding-center fluid; we believe it is fhis effeét_which
causes the ion temperature to appear to bé as high as -~ 3eV,‘ana gives
the observed finite Larmor radius stabilization. Although a more precise
determination of this effect would require a kinetic theofy to '
accurately describe the ion orbits, we believe that the experimental and
theoretical agreement shown here demonstrates that fluid theory accounts
for the basic features of the instability. Good agreemént has also been
found between observed and calculated eigenfunctions for Kelvin-Helmholtz
instabilities in other experimentsS% where the fluid description of tﬁe
ions is not strictly justifiable. 1In this connection, it may be notedA
that while the rotation of the column is nonuniform, especially for the
m=1 que, we regard the velocity shear as modifying the simple
centrifugal flute mode for uniform rotation, rather than giving rise to
a Kelvin-Helmholtz type instability due to velocity shear. This is
supported by our study of the effect of sharp velocity shear on the‘
m = 1 mode in Section 3.3.3.

There have been other reports of low-frequency instabilities
in the HCD, but the theories given to explain them have in general employed
rectangular geometry, neglecting cylindrical geometry effects. These are
discussed elsewhere.67 However, it is clear from the theory of this section
that cylindrical geometry effects are very important in the low-pressure
HCD, due to the large .EO X B rotation. Thus, in describing instabilities, .

these effects must be included.
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4. WAVES PROPAGATING AT AN ANGLE TO THE MAGNETIC FIELD

The flute waves studied in Section 3 are generally most unstable
due to centrifugal effects for propagation perpendicular to the magnetic
field. As the waves propagate at an angle to the magnetic field, their
characteristics are modified, and they can be unstable in the absence of
cylindrical geometry effects. This transition region has been studied
by Chen.63 A

When propagation is at an angle to the magnetic field, the nonzero
axial wavenumber, kz, allows for a phase shift between the potential and
density fluctuations of the waves. This phase shift facilitates the
release of potential energy associated with a density gradient perpen-
dicular to the magnetic field. These unstable waves are usually called
drift waves, and they can occur in both collisionless and collisional
plasmas.42 For these waves, the phase velocity perpendicular to both
the magnetic field and the density gradient is close to the electron
diamagnetic velocity, while the phase velocity along the magnetic field
is between the ion and the electron thermal velocities.

In this section, we shall only consider collisional drift waves,
also known as resistive drift waves. They were first studied by
Moiseev and Sagdeev39 in 1963, and by Chen40’41 in 1964-65. Since these
early papers, a number of theories have appeared which include various
effects neglected previously, in order to obtain better correlation with
experimental observation of these instabilities, most notably in
Q—ﬁachines. These effects include ion collisional viscosity, first order
axial motion of the ions, electron heat flow, and zero order axial drift
(current) of the electrons. 1In Section 4.1, we derive the complete
dispersion relation, including all of these effects, and compare it with
the theories to date. In doing so, we use rectangulaf geometry, and
assume weak gradients. This allows us to Fourier transform in space,
which leads to an algebraic dispefsion relation.

In Sections 4.2 and 4.3, we solve this dispersion relation for
parameters appropriate to a @-machine experiment, using various éommon
approximations, and show what effects they have on the solutions. We

pay particular attention to-the manner in whicii we interpret the solutions



for axially bounded systems, as prescribed -in Section 2. Section 4.3
also contains a discussion of the entropy wavef5 which can be unstable
for certain parameter ranges. In Section 4.4, we make direct_comparison
with some measurements of drift waves from a Q:—mach'ine'ex"pe_i'ime.nt,4f7 to -
illustrate the practical importance of both the common éppfoximafibns:tO'ﬂ

the dispersion relation, and the interpretétion of the solutions.

4.1 Basic Theory

4.1.1 Steady State Plasma

The model we use in this section is a fully ionized plasma
in rectangular geometry, wifh a uniform magnetic field in the z-direction,
and a number density gradient in the x-difectioh. The model is shown in
Fig. 4.1. The plasma is uniform in the y- and z-directions, and the
ions are singly ionized. There may be a uniform DC electric field in
the x-direction and/or z-direction. For reference, the z-direction will
be known as the axial or parallél direction. The eléctroné and - ions have

a common uniform temperature, T as is approximately true, for example,

0’
in Q@-machines and also in the nighttime ionospheré.

~%-—-y

Fig. 4.1 Model of the plasma in rectangular geometry,
showing the DC quantities and the direction of wave
propagation.
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We use the two-species moment equations given by Braginskii.58
These will be very similar to those used in Section 3, except that we
will include the effect of ion-ion collisions in the ion viscosity
tensor, and allow for particle motion along the magnetic field. The
particle localization necessary for a fluid approach is again cauéed by
the magnetic field for motion across the magnetic field, and by particle
Coulomb collisions for motion along the magnetic field. For the ions, we
make the isothermal assumption; as has beén shown by Tsai et 31q45
inclusion of an ion energy equation has very little effect on the drift
waves. The basic equations for the ions are consequently the continuity

equation,

dn v
3t + (qxi) =0 , (4.1)
the perpendicular momentum transfer equation,

= = v - v-% X .
nm Vi TV n- (Vox,) +en(E + v, B) , (4.2)

a
i dt il ~

and the parallel momentum transfer equation,

nm d v == T 92 - ¢ '?? ) + enE Cmnv u C.n aTe (4.3)
idt 'iz ~ i oz Zi’y z t UMM eiz YT Tz ’
Here u = v - v, ,C =0.51, and Vv . 1is the electron-ion collision

z ez iz r ei

frequency for momentum transfer, which accounts for the parallel
reéistivity. The last term in Eq. (4.3) is the thermal force term with
Ct = 0.71. The‘ther symbols are analogous to those defined in Section
3, except that 24 now includes ion-ion collisions. The explicit form
of the viscosity tensor is now quite lengthy and is giVen in Appendix D,
where it is assumed that mii >> V?i, with vii being the ion-ion
collision frequency. Also in Appendix D are the definitions for Vel
and Vv, .

ii

For the zero order ion velocity, we solve Eq. (4.2) with the

assumption that ¥ = (ano/ax)/no is a constant, which leads to
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Here vD[= - TOX/eB] is the diamagnetic drift speed (note that X <0 if

the density decreases with x) and VEO[= - EXO/B] is the 'EO

speed. In this zero order solution, the effect of viscosity 'is neglected

X B drift

as being small; no inertia term arises éince.rectangu;ar.geometry-is.used.
The appropriateness of taking X constant and also neglécting possible
cylindrical gebmetry effects for interpreting experimental results is
disqussed in Section 4.1.3. 1In any event, unlike the flute waves

studied in Section 3, drift waves do not depend on zero order ion inertia
for instability; the charge separation needed for instability is provided
by eléctron resistivity along the magnetic field 1ines.40 Finally, zero

. However,

0
due to much larger inertia of the ions, their DC drift is much smaller

order axial velocities can arise due to the electric field Ez

than that of the electrons, so we may take VizO = 0.

We do not make the isothermal assumption for the electrons,
since axial heat flow may be important. There are then three basic
equations for the electrons: continuity, momentum transfer, and heat

transfer. The continuity equation is

— + YV - (y)=0. . - (4.5)

Neglecting inertia and resistivity terms compared to the ve_L X B term,

the perpendicular momentum transfer equation is

- - X . .
0=-V, (nTe) en(E, + et B) (4 6)

Including resistivity, the parallel momentum transfer equation is

d ' 3 :
0 = - =— - - Ay - ’ . .
3 (nTe) _enEZ Crmen eiuz Ctn % Te (4 7?

Finally, the heat transfer equation is

. o
3ale e sg My g, (T 2
2 dt edt 2 1L eB~z . l'e dz \ m Vv z
. . e el
o 2 o aTe
- = Vv
CtnTeuz meCr einuz + CtnuZ i (4.8)
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where CeX = 3.2 1is the electron thermal conductivity coefficient.

To find the zero order electron motion, we solve Eqs. (4.6)

and (4.7). Equation (4.6) yields

= i 4.9
Yel0 (v + VEO)—vy ) - (4.9)
where vD and VEO are defined in Eq. (4.4). Since we have taken
vizo = 0, Eq. (4.7) can be used to obtain A
e E
z0
VezO = m— . (4-10)
e r ei

We thus see that the zero order motions of the ions and
electrons are closely analogous to those found in Section 3 [Egs. (3.4)
and (3.14)], i.e., there is a diamagnetic drift term and an 'EO X‘E
drift term. However, we now also allow for motion along the magnetic
field. As we shall see from the perturbed equations, it is the first
order axial motion of the electrons which can lead to instability, while
the zero order axial motion (or current) may aid or oppose this
instability.

4.1.2 Perturbed Plasma

Following the procedure in Section 3, we perturb the equations
describing the plasma configuration about the zero order state found in.
the previous subsection. The variables n, E, vi, Xe’ and Te are

assumed to have the general form

n(x,y,z) = no(x) +n

1 exP i(wt - kxx'— kyy - kzz) , (4.11)

where, of all the zero order variables, only n, varies with x. The
first order variation implies that the equations have been Laplace
transformed in time and Fourier transformed in space. For this spatial
variation to be accurate, kx must be assumed large compared to ¥, the
inverse of the density gradient scale length. This is associated with
the local approximation, which is discussed in Section 4.1.3. Further-
more, we neglect all odd powers of kx in the dispersion relation. This

is to simulate normal mode type behavior in the x-direction (or radial
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45,59
direction in cylindrical geometry). ’ . Finally, the waves are assumed

to propagate at large angles to the magnetic field, such that k) >> kz,
where ki = ki + ki. The remaining assumptions are the same as for the
flute waves in Section 3, i.e., the waves are low frequency (w << wci),
quasistatic (El = —V¢l), and quasineutral (nel = nil).

First, we perturb the ion equations [Eqs. (4.1) - (4.3)].
To find.the perpendicular ion velocity, we evaluate the ion'viscosity
term using Appendix D, keeping only the significaht terms subject to the

assumptions mentioned above. This gives

= b4 g bwci N
- v- ) = - i x 4.12
nomi( i)l ( 2 cib\)ii>»¥i_L1 * 2" i ( )

where Ci =.3/10, b = kfp?, and wD = kva is the diamagnetic frequency.
Using Eq. (4.12) in Eq. (4.2) then yields.

T

i k w,

1 0 o b ~L D .

= m— =1 i k - —) - —_— —_— - v

1-b \m.w . [ 1ixk Q-3 - o=+ 5 - iCh ii)]
. 1 Cl1 Ccl .

V.
~ill

n eP W n
1 1 [ b, ~ i D . - 1
— = + v_ | (1-2)i - —(w, + — - iC.bV, )i ] —_ >,
<n0 T0 ) D 2°<y wci 1 2 1. 1}f~x nO

(4.13)

where wl = W - kyVEO in analogy with the w used in Section 3.
Unlike in the iterative method of solution used to find the ion velocity
in Section 3, we do not assume the inertia and viscosity terms are small
in deriving Eq. (4.13). 1If the iterative approach were used, we would
find an ion velocity as in Eq. (4.13), but with the term 1/(1-b)
expanded as (1+b) and all bz.terms neglected. This expansion is usually
valid since b << 1 for fluid theory to be strictly justifiable.
Watanabe and Hartman70 have noted that there are two slightly different
basic dispersion relations in the literature which may be related by
expanding 1/(1—b) terms as they appear in the final ion equation
relatiqg only n and @1. It is just the two methods of solving Eq.

1

(4.13) for vinl which leads to this difference. Using Eq. (4.13) leads

. ; . . 70
to the dispersion relations derived by Watanabe and Hartman, and by
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Rowberg and Wong,47 while the iterative method of solution leads to the
dispersion relations of Hendel et 3}.,43 and Tsai et 31.45 In practice
there is little difference in these, except perhaps in the region where
b is not very small, and the fluid description is less reliable.
To find the ion parallel velocity, we add Egs. (4.3) and
(4.7), and use the relation .
1 s

v - %) = (iw_ - 4C, bV 4.14
nomi( Ty), = Gy = 40PV v, (4.14)

obtained from Appendix D. This yields

2
S Tok_ nl/no + Ty /T, 159
izl = m, w, - i 4C.bV, . ’ )
i 1 i il

We can then eliminate the velocity from the first order ion continuity

equation [Eq. (4.1)] to give

1 1 el
Q. -+ O — A —= = 0 . (4.16)
11 n, 12 T0 13 TO

The O's which relate the first order variables in this equation are

K
o . = -w. + “To"z (1-b) ic. b2y
11 %17 T, (b, - 1 4ac.bv,__y T % V40
i 1 i ii .
0. = ~bw. + w_(1-b) + iC.b2y (4.17)
12 1 D PV o :
2
a = 2TOkz (1-b)
- — -
13 mi (wl. i 4Cib ii)

The réason that the electron term Te appears in the ion continuity

equation is because the ions and electrons are coupled together by
electron-ion collisions,

We now turn to consideration of the electron eqﬁations. It
is straightforward to solve Egs. (4.6) and (4.7) for the first order

electron velocities, resulting in
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- oy T -
+ VD i - P + T ] = (4.18)
Y\ "o Yo
and
v = - kz (il - ffl + (C_+1) EE})
ezl o rvei n0 TO t TO
n T :
. v S 3l Ly L (4.19)
ez0 nO 2 TO izl

Upon substituting these iﬁto the perfurbed electron continuity equation
[Eq. (4.5)], we obtain an additional first order equation
n ' ep T

1 1 el -
A 1, &1 _ i 4.20
%1 n. * %2 Tt 0 ( ,)

0 0 0

The new C's in this equation are given by

2 2
Kk .
o = o - 2Ty z (1-b) _ 1TOkz
21 7 "1 m, (w.,- 1 4C.bV,,) mCwV . ’
i 1 i ii e rei
2
iTokz , . .
a = - ———— .
22~ “ptmwcv.. "’ (4.21)
e r ei :
.9 2
T k T k
3 0z (1-b) . 0z
6/ = = == - =1
23 5 %2620 T Tmo (o, - 1 4C BV ) €1 o5
i i i er ei

A third first order equation is obtained by substituting the electron

velocities into the electron heat transfer equation [Eq. (4.8)], which

gives
n ed, . - T _
o Lo —4 o, _%l = 0. (4.22)
31 n, 32 T0 o

This final set of the a3s can be written as
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2

TOkz
(0] = k i —_—,
31 wl * zveZO + 1 Ct mCwvV .
e r el
(0] = - - 2k - i —_——, 4.2
32 wD zVeZO . Ct mCV . ( 3)
e r ei
: T k2
a --3 +-7—(C+1)kv ifc c +cC_(C 1)]——-——OZ
33 = 7 2 Y1 TR E Vgm0 T MG Ot GGt mCy._,

Here we have neglected the zero order joule heating due to the zero order
electron current.

Equations (4.16), (4.20), and (4.22) provide the three
equations for the wave variables n,, )

and Te The dispersion

1’ 1’
relation is obtained by requiring that the equations give non-trivial
solutions for the variables. This means that the determinant of the

coefficients of the equations must be zero; that is,

a a
11 12 a13
D(w; k) = a21 Oéz : 053 = 0 . (4.24)
o a o
31 32 33

This dispersion relation is quaftic in w and of sixth order in k
A number of dispersion relations have appeared in the literature which
ngglect some of the effects included in Eq. (4.24). Those we shall
consider include ion collisional viscosity, but neglect various
combinations of the following effects:

(a) first order ion axial motion;

(b) electron heat transfer (non-isothermal theory for

the electrons);

(c) =zero order electron axial drift (current).

These theories are summarized in Table 4.1, which also gives the order

of the dispersion relations in w and k .
Z
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Table 4.1

Comparison of Various Drift Wave Dispersion Relations

Effects ' ' _ Order order

Authors . : .
Neglected in w in kz
’ . 43 ' '
a,b,c Hendel, Chu and Politzer; 2 2 (even)
4 . .
Rowberg and Wong 7

a,c Tsai, Perkins and Stix45 3 : 4 (even)

a " Tsai, Ellis and Perkins2S : 3 - 4 (odd)

71 ‘

c Schlitt and Hendel; : 4 6 (even)

Watanabe and Hartman70

none Present work ’ ' -4 . 6 (odd) -

'In Sections 4.2 - 4.4, we shall investigate the effect of
these approximations, and show how they are important for interpreting
experimental results. 1In solving the dispersion relation, we interpret
the solutions in the manner described in Section 2 for an axially
bounded plasma, and contrast this to the usual interpretation of the
solutions. '

4.1.3 Comment on the Slab Model

Before the dispersion relation is solved, some discussion is
in order as to hpw tﬁe results of the:rectangular geometry. model assumed-
heré can be applied to geometries of experimental interest; in
particular, the cyiindrical geometry found in plasma sources such as
the Q-machine. Drift waves, as observed in Q-machines, are found to be
localized to a limited radial region where X [= (dno/dx)/n0] is

b

approximately constant. This localization can arise due to shear

in either the diamagnetic Qelocity or the -EO X(g .velocity. Shear in
the diamagnetic velocity can localize-the waves to a region where ¥

is constant, when !xl decreases on either side’of this region.
Perkins‘and Jassby38 have éhown that localization can also occur for
drift waves when there is a'shear in the EO X'E velocity for a constant

%X-. This type of localization is analogous to that seen in Section 3.3.2
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. 63
for the m = 2 azimuthal mode of the flute wave. 1In addition, Chen

has found from numerical solutions in cylindrical geometry that, even in
a uniformly rotating plasma column (no shear), the higher order
azimuthal modes for drift waves become progressively more localized.
Thus, in the theory of Section 4.1.2, we take ¥ to be constant, which
implies n varies exponentially with x. The only dependence in the

0

dispersion relation on the number density, n and thus the x-position,

>
is then through 'vii and vei' Since Vii Ois stabilizing and vei
is destabilizing, these effects tend to cancel out. Because the waves
are assumed to vary as exp(-ikxx) in the x~-direction, we have taken
only even powers of kx in the dispersion relation, to simulate normal
mode behavior of the localized waves.

In applying the rectangular slab model to cylindrical
geometry, we imagine the slab of thickness Ar being bent into a
cylindrical form as shown in Fig. 4.2. The x-direction then corresponds
to the radial direction, and the y-direction corresponds to the
azimuthal direction. The waves localized to this slab give a good
representation of waves localized radially in the column, provided
Ar/r <<'1, as shown in Fig. 4.2. This latter restriction is one
condition needed for cylindrical effects to be negligible. In addition,
it is assumed that the radial electric field is not too large, so that

centrifugal force effects may be neglected.

®2

Fig. 4.2 Rectangular slab model with coordinates (x,y,z) applied to

cylindrical geometry with coordinates (r,8,2).
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It should be mentioned that the rectangular geometry model
may be applied directly to the ionosphere, thch has the ingredients for
drift waves, i.e., a density gradient, a magnetic field, and finife_
resistivity. We shall not pursue this study, but the general
characteristics found for the drift waveé may be appligable to.the

ionosphere.

4.2 Solutions to the Isothermal Dispersion Relation

4.2.1 Basic Drift Wave Characteristics

The simplest dispersion relation for the drift waves.is
obtained by making the isothermal assumption for the eléctrons, and
neglecting’ion axial motion. This dispersion relation.is found by
neglecting all the terms in the 's which have (wl - i 4Cibvii) in
the denominator, as these arise from ion axial motion [see Eq. (4.14)].
The upper  left-hand co-factor of the determinant in.Eq. (4.24) is then

set equal to zero, i.e.,

a -Q.. 0. = 0 . (4.25)

11 0§2 21 12

This has the effect of letting Tel = 0, and neglecting the electron

heat transfer equation [Eq. (4.19)]. The resulting dispersion relation

is
2 1+ b)Kz
D(w,K) Ew +41 - i|=~e——"" + C.bv, w
b v i i
e
C.bv.K ‘ 2
i i (1 - b)X
- 2 - - bv =0 .
v b v Ci i ! (4.26)
e e
where the normalized quantities are
w vii r ei 2 TOk2 :
W=— ,V, =—= , Vv - I8el - ygs_ z_ (4.27)
W, i w e w, 2
D D D m w
e D
At this point we have set E =0 th = ;. = Ww.
p <0 , SO at wl w kyVEO w
The reason is that a finite E simply produces a Doppler shift in

x0
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frequency (note that w appears in the Q's always via wl), so this
effect can easily be accounted for after the dispersion relation has
been solved for w(k). The dispersion relation is essentially -that of
Hendel et El"43 and Rowberg and wOng,47 the difference being that we
take the ion viscosity coefficient to be C,1 = 3/10, as given by
Braginskii, © while they take C, = 1/4. Also, that of Hendel et al.
differs slightly in terms involving b, as discussed in the derivation
of 'Xixl [Eq. (4.13)].

Solutions to this dispersion relation have been of particular
interest lately in order to explain instabilities which arise in Q-machines.
Correlation between theory and experiment has been made in one of three
ways: comparison of the onset field and frequency for self-excited
unstable modes;43 comparison of the frequency and damping rate for
externally excited modes when the system is stable; comparison of the
frequency and growth rate for self-excited modes when the system is
unstable and feedback stabilization is switched off.73 In all cases, it
is found experimentally that the system is not as unstable as theory
predicts, i.e., the damping rates are larger or the growth rates smaller
than predicted. This suggests an additional damping mechanism is present.
In their experiment, Rowberg and Wong47 identify this as end-plate
damping for end-plates which are ion-rich. From the discussion in
Section 2, this implieslthat we must solve the dispersion relation for
complex kZ in order to construct the normal mode solutions, since the
. reflection coefficient, P, of the end-plates has lpl < 1. This approach
has not been used before.

We postpone a detailed comparison with Rowberg and Wong's47
experiment until Section 4.4. However, in order to investigate the
behavior of drift waves in a parameter range which is of experimental
intérest, we take parameters applicable to their experiment. In applying
the theory to the cylindrical geometry of the Q-machine, k 1is real and
determined experimentally by identifying it.with m/a, where m 1is the
azimuthal mode, and a is the radius at which the azimuthally travelling
wave has its maximum amplitude. 1In this connection, note that the
normalized frequency, W, used in Section 3, is thus a multiple 6f the

normatized freyuency, w, used nere; the relgtion is” W = mw. TFurthermore,
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kx is determined from the radial wave profilg (often kx a:ky), while
kZ is determined from the axial profile of_?he wave, a matter discussed
at greater length in Section 4.4. All of the other parameters are
determined‘with reasonable pfecision from the experimental conditions.

A partial mapping of K 1into the w-plane via Eq. (4.26) |
for conditions corresponding to Rowberg and Wong's m :.2 mode is
shown in Fig. 4.3. Because D(w,K) 1is even in K, the real K-axis folds
on itself, and the two sheets are shown in a single diagram. The two
soiutions are shown as the drift wave branch (labeled I) in the right
half plane, and the flute wave branch (labeled II) in the left half
plane. This flute wave is essentially‘the wave studied_in Section 3
for propagation perpendicular to the magnetic field (K = 0). 1t is
not unstable here since wé are considering rectangular geometry,'which
neglects the destabilizing centrifugal forceleffécts, and it will be of
no pafticular cdncern in this section. The drift wave branch, on the
other hand; can be uhstablé, and the reievant branch point of the

dispefsion relation, as defined in Section 2.1.2, occurs at
w =1C.byv, , K =0 . (4.28)
s i i s -

Since wsi“> 0, the system can never be absolutely unstable. The real
K=axis terminates for K =t ® at w = [(1-b) + iZCibvi]/(1+b), which
corresponds to stability in the limit of short axial wavelength. At
intermediate values of K, the real K-axis may or may not dip into the
lower half plane, corresponding, respectively, to convecfive instability
or stability, depending on the parameter values. The condition for
convective instability is

2 (1+b) 3.2

8C 5 bV <1, (4.29)
i1-p) _ o

which, for b << 1, may be approximated by

> s (scfvi2 y b - (4.30).
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This gives a threshold magnetic field for marginal instability, BC x vi/B,

The instability is driven by the potential energy available
from the density gradient. The parallel resistivity of the electrons,
as manifested by Ve’ maintains the phase differenc¢ between n1 and
¢l, which is necessary for instability. Since K and Ve always
appear in the 'dispersion relation [Eq. (4.26)] as Kz/ve, the effect of
varying the resistivity is seen in Fig. 4.3 by assuming K is constant
and ve changes. Thus, the drift waves become stable as the
resistivity goes to zero (Ve = 0), the frequency going to the same limit
as when K = * «. 1In this case, the inertialess electrons may stream
freely along the magnetic field lines to short out any phase difference
between n, and ¢1 which might lead to instability.

For solutions with increasingly large values of Ki’
corresponding to lossy end-plates (lol < 1), the drift waves are
stabilized. For reference, the value of Kr measured by Rowberg and
Wong is indicated by crosses in Fig. 4.3. This demonstrates how the
length of -the Q—machine can restrict the normal mode frequency to be
larger than the most unstable value.

It is interesting to consider the relative amplitudes and
phases of the wave variables nl/nO and e¢1/TO as K 1is varied.
Since, for the slab model, these variables have the same ratio every-
where, we choose to normalize by nl/no. Neglecting ion axial motion,
we then obtain from Eqs. (4.16) and (4.17)

ed /T w - ic b
6, = nl/no - 1 1 . : (4.31)
170 bw + (1-b) - i Cib vi

Here the w's found from solution of Eq. (4.26) must be used. 1In Fig.
4.4, we have plotted the phase and magnitude of this relation as a
function of Kr for several values of Ki' The conditions are the same
as in Fig. 4.3. When the drift wave is unstable, the phase angle is

negative, corresponding to the density oscillation, n 1eéding the -

1’
potential oscillation, ¢l. This phase angle becomes guite small

o .
(~ 1-27) as Kr increases, but changes quite rapidly for small Kr

The phase angle is still significantly smaller than that found for the
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Fig. 4.4 Ampiitude and phase of ¢1n = (e®1/T0)/(nl/no) for the drift .

wave branch in Fig. 4.3 as Kr is varied for several Ki values.




flute wave (~ 1800) in Section 3. The effect of solving the dispersion
relation for nonzero Ki is to decrease the phase shift and the
temporal growth rate. - Note  that the waves are stabiliééd fdr a phase
shift of about —30, while in Section 3 any pﬁase shift between n and‘

1
®. (of the proper sign) implied instability. The difference arises from

tie damping effect of ion collisional viscosity considered here. For
the amplitudes, the normalized potential and density fluctuations are
nearly equal, except for small Kr ( < 20), when the'potential gmplitude
is smaller. A

4.2.2 Effect of Ion Axial Motion

To include the effect of ion axial motion in the isothermal
approximation, we again use Eq. (4.25), but retain the terms of the Q's
with (wl - i 4Cibvii) in the denominator. This gives a dispersion
relation which is of third order in ww and of fourth order in kz. It

has the explicit form
W + P w2 +Pw+pP. =0 , (4.32)
- 0 1 2 '

where the coefficients are given by

2 i
. =1-1i Sliglg— + 5C_, bV, s
0 bV i i
e
KZC bV m 2
4 i i e 2 2 1-b K
= - + 6) ——— + 2 — v i | — — - 5C.bV
Bl (b + ) + — K™ + 4(Cib i) + i 5 S C_1 i ’
e 1 e
4c.v. (1-b)K> /8C . by | m \ m
_ i1 2 . i i e 2 e 1-b _4
62 = S5 4(Cibvi) +1.( S5 + 2 - ) C.bv . K + 2 — v K
e e 1 1 e
(4.33)

We have used the same normalization as in Eq. (4.27). Two of the roots
in w correspond,to the drift wave and the flute wave, as they are
modified by ion axial motion, The -third root can be labeled an ion-
acoustic wave, and arises due to the axial motion. However, it is

highly damped and will be of little concern here.
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The modification of the drift wave is most pronounced at
shorter axial wavelengths, since the new terms in the Q's appear
multiplied by kz (or K2), as seen in Eqs. (4.17) and (4.21). This is
physically reasonable because, for long axial wavelengths, the inertia
of the ions prevents their axial motion from being significantly
influenced by tﬁe wave. This effect is illustrated in Fig. 4.5; where
the drift wave branch and the ion-acoustic branch (labeled III) are
mapped in the w-plane for the same parameters as in Fig. 4.3. We have
only included that portion of the drift wave map which is noticeably
affected by the ion axial motion. The real K-axis no longer terminates
at a finite w, and the growth rates of the instability are decreased.
This is due to a combination of the collisional viscosity associated
with the axial motion [see Eq. (4.14)] and the fact that this motion
tends to short out the axial electric field. As we shall see in
Section 4.4, these effects can be very important in experiments. For

3
large values of K (~ 107), the drift wave branch (I) and the ion-

*
1~ Vi
The axial phaselvelocities of the waves then approach the ion-acoustic

acoustic branch (III) have solutions which are related by w

speed Ev(TO/mi)g]. Thus, it is clear that these branches are evolving
into a pair of ion-acoustic waves as the propagation becomes more nearly
parallel to the magnetic field (K large). These waves are studied in
Section 5.

The phase and amplitudes of the first order potential and
density are not significantly affected by including ion axial motion,

and one may still refer to Fig. 4.4 for these.

4.3 Solutions to the Non-Isothermal Dispersion Relation

4.3.1 Effect of Electron Heat Transfer on Drift Waves

To include electron heat transfer in the theory, we consider
the electron temperature as a wave variable, and include the heat
transfer equation [Eq. (4.8)]. The resulting dispersion relation is
Eq. (4.24), which is now of fourth order in w and of sixth order in
kz. At this point, we choose to leave the dispersion relation in
determinant form, since it will be solved numerically. The four roots

are found by constructing a fourth order equation appropriate to. _a given
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set of parameters by the Lagrangian interpolation method,74 and then
solving this equation. The interpolation method requires the
determinant to be evaluated at only five points, i.e,, five values of
w, for each solution.

The solutions to the dispersion relation are shown in the
w-plane in Fig. 4.6, with parameters as in Figs. 4.3 and 4.5. We have
omitted the ion-acoustic and flute wave branches because they are damped
(wi > 0), but we show the new fourth root (labeled IV) because it may be
unstable for very long wavelengths. This wave arises from inclusion of
electron heat transfer, and has been called the entropy wave by Tsai et
3}.46 It will be considered in more detail in Section 4.3.2. By
comparing Figs. 4.3 and 4.5 with Fig. 4.6, we see that the growth of the
drift wave may be increased or decreased by electron heat transfer,
depending'on the value of K. For example, with Ki = 0 the growth
rate is larger for Kf > 22 and smaller otherwise. However, as Ki
is increased, the growth rates decrease rapidly, and the non-isothermal
theory gives larger damping rates for all Kr shown. Also, the real
frequency for the non-isothermal theory is significantly lower. However,
the frequency is not a godd datum for distinguishing the presence of
non-isothermal effects in experiments, because it must be corrected for

the E0 X‘E Doppler shift from measurements of E which are not very

0’
precise.

The relative amplitudes and phases of the first order
variables now require two sets of plots, since there are three variables.
Again we normalize to nl/no, and plot ¢1n = (e¢1/To)/(n1/no) and
Teln = (Tel/To)/(nl/no) in Fig. 4.7. These relations can be found in
terms of O's from Eqs. (4.16) and (4.20), and are analogous to Eq. (4.31)
for the isothermal theory. 1In Fig. 4.7(a), we see that the phase shift

between ¢1 and n has increased over the isothermal théory (Fig. 4.4)

1
for Kr'e 30, and may be more than twice as large. The shapes of the
curves are very similar, however. The amplitude of ¢l has decreased,
the effect being most noticeable for Kr < 40.

The phase shift for the temperature fluctuations, sthn in

Fig. 4.7(b), is quite large, while the amplitude is small. 1In spite of

+

this small amplitude, .a knowledge .of the- phase -and—anpiituade of “the~
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Fig. 4.7(a) Amplitude and phase of ¢lﬁ for the drift wave branch
in Fig. 4.6.
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temperature fluctuations is important in interpreting Langmuir probe

measurements of the phase between n

by Motley and Ellis.75

1 and ®1, as pointed out recently
It should be noted that the temperature fluctuations do not
appear to tend to zero as K - 0, contrary to the proof in Appendix C
that there are no temperature fluctuations for propagation perpendicular
to the magnetic field if vlTeO = 0. This is due to the fact that; as
K - 0, the drift wave branch approaches w = 0 (or wl = 0). This
demands a special solution to Eqs. (4.16), (4.20), and (4.22), with
nl = ¢l = 0, which leaves Tel undetermined. The difficulty is
alleviated when one considers cylindrical geometry, as in Appendix C,
since the analogous special solution, w - me = 0, does not arise in
general. Even for rectangular geometry, inclusion of any small physical
effect which would move the solution slightly off w = 0 would give
T,y -.0 for K~— 0. In fact, for the entropy wave, w# 0 as K - O,
so Tel ~ 0 as we shall see in the next subsection.

4.3.2 Entropy Wave

As mentioned above, the fourth root to the dispersion relation,
called the entropy wave, may be unstable for very long wavelengths. For
the conditions of Fig. 4.6, it becomes unstable for 5.0 < !Kr|,$ 6.5,
although only weakly so. It becomes stable for a small Ki value, so
we will only consider the Ki = 0 'case.

The relative amplitude and phase of the first order variables,

normalized to nl/n are shown in Fig. 4.8. The potential and

O)
temperature phase shifts have opposite variations with Kr’ but have

approximately equal values for instability. The amplitudes are also
quite different from those of the drift wave, the temperature fluctuation

being much larger for the entropy wave. Note also that Te1-4 0 as

Kr -+ 0. A similar type of entropy wave (or temperature wave) afises in
the study of low-frequency instabilities in a weakly ionized gas when
electron heat transfer is considered.76 In that case, small temperature
fluctuations produce large changes in the ionization rate, and the

temperature waves become unstable ionization waves whose nonlinear limit

R e . R - 77
is identified with the striations commonly observed in positive columns.
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4.3.3 Effect of Electron Axial Drift

When there is an electron axial drift, due to an axial

“electric field, for example, the system is no longer symmetric, and the

dispersion relation should contain odd powers of kZ (or K). The effect

of this axial drift can only be determined from the non-isothermal

theory, since the drift terms cancel out in the isothermal dispersion

relation [see Eq. (4.26)]. Thus, we must again solve the full dispersion

relation, i.e., Eq. (4.24). We illustrate the effect by solving the

dispersion rflation for an electron drift of 5 Cs, where

Cs = (To/mi)2 is roughly the ion-acoustic speed. §Since the dispersion

relation is no longer even in K, the solutions for K do not coincide,

. . > A
and we must consider separate plots for K < 0. The solutions are

shown in the w-plane for real K in Fig. 4.9, together with the v =0

ez0

solutions for comparison. We see that the solutions are strongly

modified by the drift, especially for small ,KI values. 1In fact, the

topology has changed so that the drift wave and entropy wave branches

are interconnected. For |K|,3 10, where the drift waves can be clearly

identified, the drift is destabilizing for negatively directed waves for

K 2 -22, and stabilizing for K S -

22. On the other hand, for the

positively directed wave, the drift is stabilizing for K-s 15, and

destabilizing for K < 15. Thus, for large |K|, the effect of the

drift is destabilizing or stabilizing, according as the phase velocity

is parallel or antiparallel to the electron drift. Also, the phase

velocity of the wave, (w/K)(mi/me) , is equal to the drift velocity for

K =~ 15, and smaller than the drift velocity for K > 15, which is just

the region that is significantly destabilized by the drift. This is

reminiscent of a resonant particle type instability, where particles

drifting slightly faster than the phase velocity of the wave transfer

energy to the wave and cause it to grow, as in a travelihg wave amplifier.

However, for a collisional plasma there are no resonant particle effects,

and the effect seen here arises from finite electron thermal conductivity.

This mechanism will become clearer in Section 5, when we study ion-

acoustic waves in the presence of an electron drift.

The amplitude and phase of ¢1 and Tel have quite

-diffexrent -behavicrs-Lfor —XK>-0 aid

B e

| N
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Fig. 4.10(a) Amplitude and phase of @
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in Fig. 4.9 with Ver0 = 5(T0/mi)
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K > 0, both ¢ln and T have negative phase shifts, while for

eln
K < 0, the phase of each becomes positive as lKl is increased. For

K > 0, the amplitude of ¢1n is decreased, and that of T increased,

eln
over the case when vez0 = 0 (Fig. 4.7), so the enhanced stability is
accompanied by larger temperature fluctuations. The opposite is true
for K <0, when ¢ increases and T decreases.
In eln

In addition to the solutions for real K, we find that there
are now two branch points in the lower half plane when the dispersion
relation is solved for complex K, one at wS1 = =-0.13 - i 0.085, and
the other at w = 0.54 - i 0.045. Both of these are relevant branch

2
points in the sznse discussed in Section 2, so the unbounded plasma is
now absolutely unstable.

To find the normal mode solutions for this asymmetfic
plasma, one approach is that of Tsai EI 31.,28 who consider the boundary
conditions for the end-plates of the Q-machine. These boundary
conditions are derived only in the limit of strongly electron-rich

sheaths, and neglect end-plate damping. 1In this limit, they obtain the

conditions

=]
=3

(4.34)

I
(@]

H

T 0 TeO

o
o Ix

e¢1 el
e

The first condition agrees approximately with one derived by Chen78 in
the limit of electron-rich sheaths, and corresponds to a short circuit.
Tsail et al. then construct normal axial modes from the four roots kz(w)
of the dispersion relation satisfying these boundary conditions (they
neglect ion axial motion). For conditions of interest, two drift wave
roots are dominant, while two other entropy waves are heavily damped and
only have éignificant amplitude near the end-plates. Because the medium
is non-reciprocal, they find the modes are partial standing waves, even
though no end-plate damping is assumed.

We discuss more generally the dependence of the normal axial
modes on the terminations, when these are specified in terms of reflection

coefficients for. the dominant waves, by using the procedure developed in

Section 2. It is now _convenient to map contours of constant (K. = K,; ).
Ir
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and (KI - K;) for the dominant drift wave modes into the w-plane, as
shown in Fig. 4.11] for the same parameters as Fig. 4.8. If values of

the reflection coefficients, o] and pz, for these dominant modes are

' given, either from measurementi or theory, the difference (K+ - K—) can
be calculated from Eq..2.28,‘and the normal mode frequencies read off
Fig. 4.11. The contour (KI - K;).= 0 is the locus of normal mode
frequencies when the terminations are perfectly reflecting. Comparing
this with thé brokgn line representing the case Vg0 = 0 for perfect
reflections, it is’seen that the current destabilizes the normal axial
modes over a wide range of (K: - K;) values, even though this normal
mode comprises a K+ wave and a K- wave. However, the system can no
longér be completely stabiiized by decreasing the magnitude of the
reflection'coefficients, bepause of the branch points in the lower half
w—plang at wSl and wsz.

4.4 Comparison with Experiment

4.4.1 Experiment of Rowberg and Wong

As mentioned in Section 4.2.1, we shall use the experimental
results of Rowberg and Wong47 for comparison with our theory. Their
method of studying drift waves in a Q-machine is well suited for
illustrating thg importance of interpreting the dispersion relation for
bounded systems properly, as described in Section 2. They use a double-
ended Q-machine, i.e., one having identical end-plates, with no DC
axial current. The drift waves are investigated by measuring the decay
of externally excited normal modes when the system is stable. The modes
are excited via a grid placed in the plasma, and the decay rate is
measured after the excitation is switched off. This has the advantage
that the waves may be kept in the linear regimé by exciting them only tQ
low amplitudes. The system is made stable by end-plate damping of the
waves. This damping occurs when the end-plates have ion-rich sheaths,

a point discussed at greater length below.

Rowberg and Wong, and also Hendel EE El.?g'measure an axial
standing wave with Xz-z 2L for both electron- and ion—riéh sheaths,
where XZ is the axial wavelength and L the system length. The latter,

who worked mostly with electron-rich sheaths, found A = 2L corresponding
_ z
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to a condition close to a short-circuit at the sheath edge. The former,
who worked mostly with ion-rich sheaths, investigated the dependence of
XZ on the'potential, U, of the plasma relative to the end-plates

(Fig. 4.12). They found XZ ~ 2L for ah electron-rich sheath ' .

(U = - 0.05V), and 'xz ~ 3.6L for an ion—rich,sheath (U = + 0.5V), "in

: : 78
reasonable agreement with a formula derived by Chen for the symmetric

modes:

k L k L v /m \Y2(¢ U< 0

Z
2 2 20, w_. \2mm, 'exp(—eU/TO) u> o0
‘ (4.35)

where pi is the ion gyroradiué, For electron-rich sheaths,- U <0 ,
the right-hand side of‘Eq. (4.35) is 1argé, aﬁd Xz ~ 2I, for the lowest
mode. For ion-rich sheaths, U > 0 , the right-hand side can become
comparable to or less than unity, and XZ > 2L for the lowest mode.
Due to the general shape of the solutions to the dispersion relation
shown in Fig. 4.3, it is this lowest order ﬁode which is most unstable.
If the system were longer, such that a smaller kZ (or K) wgre admissible,
the drift waves would be more unstable, and possibly a higher order
axial mode could have the largest growth rate.

Equation (4.35) is derived on the assumption that k is
real, and neglects any end-plate damping of the modes. Chen78 discusses
two damping processes connected with the end-plates. The first is due
to the fact that some charged particles, carrying wave energy, escape
to the end—plates and are replaced by new particles which do not have
this wave energy. For ion-rich sheaths, this applies to the ions and
should give rise to significant damping, whereas for electron-rich
sheaths, it applies to the electrons énd should give little damping. 1In
either case, almost all the particles of the opposite charge aré reflected
at the sheaths. The second process is end-plate diffusion, resulting in
randomization of the phase of ion gyration when ions are reflected at
the end-plates. A

Rowberg and Wong attribute the discrepancy between their

observed and calculated growth rates for ion~rich sheaths to the loss of
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ions at the end-plates. Following Chen, they calculate an associated
temporal damping decrement wiD,E (BNl/Bt)/Nl, where Nl is the total
number of perturbed ions in the column, and aNl/Bt is the rate at

which such ions are lost by recombination at the‘end—plates. For ion-

rich sheaths, the decrement is evaluated as

2v

ith 1
W, = , (4.36)
L 1 - U - u)/T
iD (1 + exp e(U - U )/ T, ]
where Vith is the ion thermal velocity, Uw is the end-plate work

function, and UI is the jonization potential of the neutrals. The
last term in Eq. (4.36) gives the probability that an ion is lost upon
striking the end-plate. The experimental damping rate is then compared
with the algebraic sum of the theoretical growth (damping) rate and the
end-plate damping decrement calculated from Eq. (4.36). »

While Eq. (4.36) is plausible, and leads to values for wiD
which agree approximately with the discrepancy between measured and
calculated growth (decay) rates for the isothermal theory used by
Rowberg and Wong, the agreement is poor for the non-isothermal theory,
as we shall see in Section 4.4.3. Furthermore, its derivation can be
criticized on several grounds. First, no account is taken of the spatial
dependence of wave energy along the machine; second, it is based on
collisionless concepts, and effectively distributes the damping uniformly
along the system. It is clear from the viewpdint developed in Section 2
that, within a fluid model, end-plate damping should be treated as a
local effect producing imperfect wave reflection (|p| < 1l). Consequently,
the mode is a partial standing wave constructed from roots kz(w) with
complex kz, corresponding to spatial growth toward the ends. The
partial standing wave gives a flow of wave energy toward the ends, where
it is dissipated; and, because 'of the spatial growth, the temporal growth
rate is reduced. _ ' ‘

Thus, end-plate damping is incompatible with the pure standing
wave (ki real) assumed by RoWberg ahd Wong. 1If the observed_mode was
indeed a pure standing wave, then end-plate damping could not have been

responsible for the discrepancy in temporal growth rate. On the other
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hand, if end-plate damping was operative, then the mode could not have
been a pure standing wave.

4.4.2 Normal Mode Interpretation

The theory of Section 2 should allow one to determine, from
careful measurements of the axial mode pattern, the reflection
coefficients and thus the values of kzr and kZi' By solving the
dispersion relation for these kz values, the temporal growth rate
which includes the effect of end-plate damping can be determined. One
can then establish experimentally to what extent the discrepancy in
temporal growth rates is attributable to end-plate damping.

For kzr we ﬁave taken the value measured by Rowberg and
Wong. However, due to the facts that their measurements were iny over
a 40 cm region of the 60 cm column, and that the wavelength was very
long, their data do not allow one to determine kzi directly. The
difficulty is illustrated in Fig. 4.13, where the theoretical amplitude
and phase of the axial normal mode are plotted with kZr = n/1.8L, L =
60 cm, and with the magnitude of the reflection coefficient,

IDI [= exp(—kZiL)], taking on various values. The amplitude curves are
very similar over the measurement region for lpl > 0.3, and the phase
shifts are quite sméll.: The measurement of this phase shift 64100) is
difficult since there is a very large azimuthal phase shift (7200 for
the m = 2 mode); very precise tracking of the axial probe along a
magnetic field line is required for the measurement. It is thus not
surprising that Rowberg and Wong did not observe an axial phase shift
over their measurement region.

To obtain an estimate of the value of Ipl in their
experiment, we use an argument based on energy considerations. The
probability that an ion is lost upon striking the end-plate for an ion-

rich sheath is given by

0 = [1 + exp e(Uw - UI - U)/TO]—1 ; (4.37)

as in Eq. (4.36). If we assume that most of the wave energy is carried

by the ions, since the electrons have a much smaller mass, 5 also

125



54

(69p) 319NV ISVHd

Ve
Ve
/ /7
1o
4
Ll
18
T
Z1 |
pd
2o
wm
AR
FLMLW
1o
14V
]
.A/A/.A/J
1o
. <
\ nuw/ ,// 1
N
o

(syun Aipajiq.o)
- 3ANLINdWV

DISTANCE ALONG AXIS IN cm

Fig. 4.13 Anplitude and phase of axial normal mode for various

-1

1.67 cm.

zr

, with k

0

magnitudes of the reflection coefficient

126



values of Kk

approximates the fraction of wave energy lost at the end-plate. 1In
terms of the reflection coefficient, the fraction of energy lost is

2 .
written as (1 - lpl ). Using this, and Eq. (4.37), gives the result

wj

exp e(U -U_-U)/T
w I 0 (4.38)

lol =
1 + exp e(Uw-UI-U)/TO

For tungsten end-plates (Uw ~ 4.5 eV), potassium atoms (UI = 4.3 eV),
ion-rich sheaths (U = 0.5 eV), and T /e = 0.19 eV, this yields lp] ~ 0.4.
In terms of the wavenumber, we have kzi:w 1.5 X 10—2 cm-z, or, for the
normalized wave number, Ki a~ 30. These valueslshould be regarded as
approximate, since we have attributed all of the damping to the ion

loss. Also, Eq. (4.38) is sensitive to the precise value of the work
function, Uw’ which is dependent on the surface conditions and lattice

7
orientation of the end-plate. 9

4.4.3 Comparison with Measured Results

In their experiment, Rowberg and Wong measured the damping
rate of the drift waves as a function of the magnetic field. 1In Fig.
4.14, we have compared their experimental data with the solutions
obtained from the various approximations to the full dispersion relation,
as discussed in Sections 4.2 and 4.3. Note that —mi is plotted
vertically, so that curves above the axis correspond to instability. We
have taken kZr to be the value measufed by Rowberg and Wong, and give
solutions for decreasing values of ,D', corresponding to increasing
zi’ :

In Fig. 4.14(a), we show the isothermal theory results

neglecting ion axial motion [Eq. (4.26)], as used by Rowberg and Wong.

It is seen that reducing ’p' ‘reduces the growth rate and leads to

damping (see also Fig. 4.3), but it is clear that no single ‘p! <1

curve matches the experimental results. The lp' = 0.3 curve matches

at low magnetic field, but has the wrong shape at high magnetic field.

On the other hand, Rowberg and Wong's procedure of subtracting a constant
-3 -1

damping decrement of Wi ~ 1.4 X 10 sec from the theoretical curve

for real k_(lp’ = 1) does lead to a reasonable match with the experiment. .
Jtor real R_LiPl o= 2/ dRbER oA ) a_rea ble I
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However, in the experiment, Xz is sufficiently small that the effect of
ion axial motion is important, especially at higher magnetic fieldé, SO
we should not expect agreement with a theory neglecting ion axial motion.
Thus, the apparent agreement found by,K Rowberg and‘Wong must be regarded
as fortuitous.

In Fig. 4.14(b), we show the isothermal results including
ion axial motion [Eq. (4.32)]. As we saw in Section 4.2.2 (Fig. 4.5),
the growth rates are decreased, but more importantly the damping rates
reach a minimum (—wi a maximum) and then decrease as the magnetic field
is increased. This is just the behavior observed experimentally, and
the curve for |p| = 0.5 fits the data very well. On the other hand,

Rowberg and Wong's method of subtracting a damping decrement, w leads

iy
to a poorer fit than before. While the agreement is quite goodIZt this
point, we shall also coﬁsider the full non-isothérmal theory [Eq. (4.24)].
The non-isothermal results are shown in Fig. 4.14(c), and,
for lpl =1 (k; real), there is a dramatic increase in the growth rate
(see also Fig. 4.6) to nearly three times that of the isothermal theory.
Subtracting the damping decrement, wiD’ still leads to a poor fit, but
this time the error is in the opposite direction to that of Fig. 4.14(b).
However, fhe solutions for |p| <1 continue to fit the data quite well,
this time for ID' ~ 0.45. This is close to the estimated value of
lol ~ 0.4 found in the previous subsection,
We have thus shown the importance of including both ion
axial motion and non-isothermal effects in interpreting the experimental
data, and that the proper interpretation of these results requires solving
the dispersion relation for both complex w and complex kz, as

described in Section 2.



5. WAVES PROPAGATING PARALLEL TO THE MAGNETIC FIELD

As mentioned in Section 4.2.2, when the angle of propagation of
low-frequency waveé becomes more nearly parallel ‘to the magnetic .field,
ion motion along the field becomesiimpdrtant; énd two bfanches of the
dispersion relation evolve into ion-acoustic wave branches. These waves
are similar to sound waves in a ﬁeutral gas, except that there are
electrostatic forces present. These forces cause the waves to be'driQen
by a combination of the electron and ion pressures, while the inertia is
due to the ions. It has been known since the early 1960's that these
waves can become unstable due to electron drift in a collisionless
plasma.49—52 The resonant interaction between the drifting electrons
and the wave overcomes Landau damping by the ions to produce instability.
The energy for the insfability comes from the kinetic energy of the
drifting electrons. Later, it was shown that electron drift can also
produce ion-acoustic instability in both weakly"ionized.46 and fully
ionized8 collisional plasmas, where electron collisional effects cause
the release of the kinetic energy.

In this seétion, we consider ion-acoustic waves propagating pafallel
to the magnetic field. We again take the case of a fully ionized
collisional plasma. The basic dispersion relafion for these waves is
derived in Section 5.1, where we can use the Fourier transform since the
~plasma is assumed uniform. In Section 5.2, the dispersion relation is
solved to find the characteristics of the ion-acoustic instability. The
effect of an electron drift (or a current) is studied, and, in addition,
it is shown that a temperature Qifference between the electrons and ions

> Ti can produce instability with no electron drift. This

0 0
. 80 , ‘g s .
latter case is a new result, and the energy for the instability is due

with Te
to the lack of thermal equilibrium between the electrons and ions. We
also consider the effect of axial boundaries on the solutions. These
studies apply to a plasma whose steady state is maintained by some
external heat sources and sinks. 1In Section 5.3, we consider the
instability in a plasma whose ''steady state" changes in time from some
given initial conditions. We conclude in Section 5.4 with a discussion

of situations in which ion-acoustic instability might arise.
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5.1 Basic Theory: The Maintained Plasma

5.1.1 Steady State Plasma

The model, shown in Fig. 5.1, is of a uniform, fully ionized
plasma immersed in a uniform magnetic field in the z-direction. There
also may be an electric field, EO, along the magnetic field. The
magnetic field is included for comparison with the models of Sections 3
and 41 However, no terms due to the magnetic field will appear in the
equations to follow{ since we are considering quasistatic waves
propagating parallel to this field. Thus, the results are equally valid
for an unmagnetized plasma. The ions and electrons are allowed to have

different temperatures, given by T.0 and Te respectively. This is
i

O!
physically justifiable because the electrons and the ions each equilibrate

58
with themselves much more quickly than with one another.

Fig. 5.1 Model of the plasma in rectangular geometry
showing the DC quantities and the direction of

propagation,

. 58

We again use the moment equations to describe the plasma.
All subscripts 'z are omitted, since this is the only direction in which
variations are considered. 1In this section, the three moment equétions

are used for both the electrons and the ions,-since--heat-fiow along the
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magnetic field may be- important for each species. For the ions, the

equations of continuity, momentum transfer, and heat transfer are

3
dn (nvi) . . o :
3ttt TS ¢ o , . - (6.1)
. 2
dv, 9 (nT.) nT, 97v, aT
n — - - - + é C - + ZenE + m CV nu + C.n < '
my dt 3z 3 7in vii azz e r ei T 7oz )
(5.2)
3 dTi avi AT BTi m '
3,1 _ X v 1) g ey -
2w T I T8 \Tmv, 52 % w Ve Te T T T8
1 11 1 (5.3)

Here Cin = 0.96 1is the ion viscosity coefficient, Cr = 0.51 1is the
resistivity coefficient, Ct = 0.71 1is the thermal force coefficient,
CiX = 3.9 1is the ion thermal conductivity coefficient, Ze is the
charge of an ion, u = ve-vi, and Si is a uniform external heat source
or sink term which balances the heat equation in the steady state when
TeO # TiO' From this point on, the word "source" will imply source or

sink. We assume that the zero order ion velocity, v, is zero, even

io’
in the presence of an electric field EO. As discussed in Section 4,
this is a good approximation since the ion mass is much larger than that
of the electrons.

The equations for the electrons are very similar, except that
we neglect electron inertia, as previously. We thus have the continuity,

momentum transfer, and heat transfer equations:

dn 9O

St T aa) = 0 ©-4)
2
a(nTe) 4 nT 3 Ve aTe
= - = —_— - .- v - .
0 — * 3 Cen v, 3.8 enkE - m CV_.nu- Cn—g- , (5.5)
ei z v
dt dv C _nT 3T m
3 e e 9 eX e e 3 e :
= —_— - == =] - - — Y -
2 "5t T TRt T 5z < mVs Bz> €Te 37w 4 3 m, . ein(Te Ti)
+mCV ol + s (5.6)
e r et T Re )
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Here Cen = 0.73 1is the electron viscosity coefficient, CeX is the
electron thermal conducitivity coefficient, and Se is the uniform
external heat source term which balances the heat equation for the
electrons in the steady state.

The zero order electron velocity comes from Eq. (5.5) when

we take v,10 = 0, and is given as [see also Eq. (4.10)]
e E
0
Vo = T mCV . (5.7
e r el

We thus have a steady state plasma in which the ions are at
rest and the electrons are drifting at a speed VeO' The electrons and
ions may be maintained at different temperatures by the source terms Si
and Se. In many plasmas,it is found that the electrons have a higher
temperature than the ions. This may be caused by heating of the electrons
by an external source (RF heating, DC joule heating, etc.) and by the
cooling of ions (occasional collisions with neutrals, for example). We
do not specify the source terms Si and Se’ but assume that they
maintain the plasma in this steady state. The initial value problem for
the case Si = Se = 0, when the plasma is allowed to equilibrate

(r - TiO) from some initial state,is studied in Section 5.3. First,

el
however, we consider the stability of a maintained plasma for waves
propagating along the magnetic field.

5.1.2 Perturbed Plasma

Since the model is of an infinite, uniform plasma, we may

take the variables n, E, ve, vi, Te, and Ti to have the general form

n(z) = n, + n, exp i(wt - kz) . . (5.8)
The same assumptions are made as in Sections 3 and 4, i.e., the waves
are quasistatic (E1 = -awl/az) and low frequency (0w << wpi), the
latter implying that quasineutrality (ne1 = Znil = nl) can be used. It
is also assumed that sources Si and Se are not important in the
perturbation analysis,»i.e., Sil = Se1 = 0. The effect of this
assumption is discussed in Section 5.2.1.
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In beginning the analysis, a simplification arises if
several of the perturbed electron and ion equations are considered
together. The continuity equations [Egqs. (5.1) and (5.4)] are used to

find the first order velocity variables
- k
S (S} N
el k ’ il —

Next we add the momentum transfer equations [Eqs. (5.2) and (5.5)],A so

|

n
o o

e
=3

that the electric field and collisional terms cancel. Using Eq. (5.9),

we eliminate vel and v_11 from this equation to give
n T T
1 il el
—_ — —_— = 0 . . .
Yun vV Tt s T (5.10)
0 i0o el

The YVY's which relate these first order variables are

Y - -2 + i 2 QEE 21/2C R 5/2/22 + EEQE 1 - &Y + (Z+RT) 2
11 ~ 13R in-r R TR 2 7
m . m R
m

L2 , (5.11)

Yy, = — Y, = 2
12 2 1372
m m

' : 1]z,
H Q= w/V . 1is the normalized frequency, # = k(T _/m ) ; = KA
ere UL)/‘el duency, (TeO/me) /vei e

is the normalized wavenumber, Ke being the electron mean free path,

2 , ;
=m,/m is th ti =" /" is t t atu j.
Rm i/ e s € mass ratio, R TiO/TeO is the temperature ratio,

T
, 1/2
and V = Veo/(TeO/mi) / is the normalized drift velocity of the
electrons.
In perturbing the ion heat transfer equation [Eq. (5.3)], we

find a second equation
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The new Y's which appear in this equation can be written as

6Z(1—RT)
Y = —iﬂ— ’
21 2
Rm RT
_ 5/2 2
3 1/2 CiyBp % 37 3 Z(1-3RT)
Vop= 4150+ 2/ R By s S (5.13)
R Z R R R
m m m T

Similarly, the electron heat transfer equation [Eq. (5.6)]

can be.perturbed, which yields a third equation,

n T T
1 il el
Y — 4+ Y —— 4+ ¥ —_ = 0 . . (5.14)
31 n0 32 TiO 33 TeO

This last set of Yy's has the form given by

i 1-R -3R
m R R
m m
(5.15)
C V2 (1-3R_)
v z(u)g ro 2.3

33 2 R )72 T2 ex 2 2
m m

Equations (5.10), (5.12), and (5.14) provide the three,

equations for the wave variables n T, and Te . We find the

1’ Til’ 1
dispersion relation by setting the determinant of the coefficients of

these equations equal to zero. The dispersion relation is thus

1 Y12 Y13
DEA,n) = Yor Yoo Yos = 0 . (5.16)
Y3y Y32 Y33
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For V =0, D(Q,%) 1is of fourth order in ( and of sixth order in «x;
for V # 0, it is of seventh order in #. The extra # factor in

Vv # 0 comes from including electron viscosity, as seen in Y of

11
the roots . in Q, two correspond to electron. and ion‘entropy (or
temperature waves), and two correspond to ion-acoustic waves. It should’
be noted that if Q 1is a solution to the dispersion relation for #«,
then —Q* is a solution for —K*. Thus, we only need to consider '
solutions for Qr > 0- or for ur > 0. The stability and characteristics
of these waves are studied in the next subsection.

In order to study these characferistics; we‘first give the
relation for the perturbed potential, since it cancelled out of the

equations when the momentum transfer equations were added. Using Egs.

(5.5) and (5.9), we find

ep n C VAT
T_1:[1+1-cn(0—ﬁl’)]—l+[(1+ct)—1%R—rK]Til (5.17)
el 0 g m el

5.2 Solutions to the Dispersion Relation

5.2.1 Effect of Unequal Electron and Ion Temperatures

We consider solutions to the dispersion relation for V = 0

H

so that D(Q,«) 1is even in #. The entropy waves are always damped

(Qi > 0), so we shall not be concerned with them. For the ion-acoustic
waves, we find that instability can arise if the electrons have a higher
temperature than the ions. The relevant branch point of the diSpersion

relation, as defined in Section 2.1.2, occurs on the real @Q-axis at
Q =0, ® =0. (5.18)

Thus, if the waves are unstable, the system is on the boundary between
convective and absolute instability.

A very convenient approximation can be made to the ion-
acoustic wave dispersion relation by assuming that for these waves

Qfu ~ + l/Rm, ie., wk~ CS. If we then restrict ourselves to RT <1
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2 -2 .
and short wavelengths with ® >> Rm , a large number of terms in

Eq. (5.16) may be neglected as small, leading to the cubic equation

5/2 2
3/2 R "
4 2 2
QS -1 |2 (2c. +¢C.)) Y = L +2) 2 [ a%
3 in ix 2 2 3 “en C 2
Z R ey R
m m
: 3/2 5/2
7 + 5RT/3 9 s cix(z + RR 4 22(Z +2-R) ,
- Qo+ i 3 53 w4 3 [
R Z R R
m m m
(5.19)
We now assume the ion-acoustic wave solution has the form
Q=0 + iQ,, (5.20)

r 1

where Qr'~ + %/Rm and lﬂrl << lQil.' Neglecting small terms, the
real part of Eq. (5.17) then gives

L

Qr (z + 5RT/3)§

s + N (5.21)
R
m

which can also be written as
)

W ZT _ + 5T, /3

r el i0

—_ - +

= _< mi ) . (5.22)

Using this result, the imaginary part of Eq. (5.19) yields the growth
(damping) rate

5/2 7/2 2
3/2 R,
q 2 / Rp 2 2 7z 2 23/2 Rp " Cy* yA
Yi¥3 0 T2 Yt 3%t ts 2 3
R Z R
0 - A Rm(Z+5RT/3) 2R Coy
2Z(1-4RT/3)
U S "~ (5.23)

2
Rm(z+5RT/3)
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For acoustic waves in a neutral gas, the dispersion relation

generally has the form
: 1.
2

T‘*Q:(—Y;‘?) ;  (5.24)
where Y 1is a constant obtained from the equation of state of the gas.
For an isothermal process Y = 1, while for an adiabatic process

Y = 5/3. By analogy, the phase velocity of the ion-acoustic wave

[Eq. (5.22)] implies that the electrons behave isothermally'and the ions
behave adiabatically. This guggests that we may take CiX =0 anq

CeX: ®©, ji.e., there is zero ion heat conductivity and infinite electron
heat conductivity. However, while this appears true for the real
frequency, we see from Eq. (5.21) that the growth (damping) rate of the

ex’
In Eq. (5.21), the terms are, respectively, the contributions

wave depends on the precise values of CiX and C

of ion viscosity, electron viscosity, ion thermal conductivity, electron
thermal conductivity, and collisional energy transfer. The first four

terms are all stabilizing, but the last is destabilizing for R_ < 3/4,

T

i.e., for T > (4/3)Tio. Note that of the stabilizing terms, the

fourth term has its coefficient Cex in the denominator, and thus

decreases for increasing electron heat conductivity. The ion terms tend
. : -1

to zero as T.,. - 0O and are proportional to Rm , While the electron

i0
and collisional energy transfer terms, being proportional to Rm are

’

smaller by a factor Rm. The first three terms contain a factor # , so
that the last two terms, which do not, -dominate for long wavelengths.

It is clear that for long wavelengths, and RT small enough, the
destabilizing effect of the collisional energy transfer can overcome

the stabilizing effects.

Figure 5.2 shows the real # contour mapped into the f-plane
for the iop—acoustic wave root for Ri = 1837, corresponding to hydrogen,‘
and for various temperature ratios RT. These results were computed from
the full dispersion relation, and agree very well (<5%) with the .
approximations given by Eqs. (5.21) and (5.23) in their range of
validity. The map‘is'symmetric about Qr. Except when RT'S 1/10,

. s - . . <
instability is confined to the region 0 < lulﬂu 1, under which conditions
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Fig. 5.2 Map of the real % contour into the (3-plane via Eq._(5.16)
for the ion-acoustic wave branch with various temperature ratios,

R, and Rm = 1837, corresponding to a hydrogen plasma.
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the fluid treatment is valid. From Eq. (5.23), one finds instability

for:
3 2(1-4 3) - (Zz+5R_/3)/2 C
2 _3z , (1-4R_/3) - (z+5R./3)/2 C_,
2 1/2 5/2 3., - 1/2 7/2
) 2 3
27 "R R TC, 42 cen)(z+5RT/3)+( / R R, Cix
(5.25)
The maximum growth rate occurs for RT << 1, and is of order (—wi)maxfw

(me/mi)vei. ‘'This is comparable with the characteristic rate of energy
transfer by collisions bhetween electrons and ions. Although this growth
rate may appear small, it can be as large as for other instabilities in a
plasma discharge, as we shall discuss in Section 5.4.

For systems which are effectively unbounded, it is
appropriate to solve for the spatial growth rates of these waves. Since
the dispersion relation is nearly satisfied for real €,%) in some
vicinity, say (Qr, %r), we have solutions to the dispersion relation
D@ +i, % ) = D@, % ) = 0, where lQi/er «< 1, ]%i/nrl << 1.

From this we may find the spatial growth rate for real (2, i.e.,

—Qi Rm Qi |
. . . (5.26)
i @Q/3x) Q x (z+5RT/3)1/2~

r’ Y,
r

Here we use the Qi from Eq. (5.23), and the * sign for propagation
parallel/antiparallel to the magnetic field. Thus, there is spatial
growth for Qi < 0, and the real frequency is still given by Eq. (5.21).
In order to clarify the characteristics of this instability,
we have calculated the amplitude and phase of the normalized first order

variables b, = (e¢1/TeO)/(nl/n0); T 1y = (Tel/TeO)/(nl/no), and

T,lln = (Til/TiO)/(nl/no)' These are shown in Fig. 5.3 as a function of
® for RT = 1/2 and 1/10 (note the different’scales)ﬂ Expressions:
for these quantities may be determined from the first order equations,
i.e., Egqs. (5.10), (5.12), and (5.17). The potential and density
oscillations are nearly equal, as would be true for a collisionless,

isothermal electron gas. Here the potential oscillation leads slightly
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Fig. 5.3(a) Values of amplitude of the normalized variables ¢1

0.25

Teln

TiIn

and Tiln for the conditions in Fig. 5.2 with RT = 1/2, 1/10.
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T;1, fOT the conditions in Fig. 5.2 with R = 1/2, 1/10.
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in phase, contrary to the drift wave in Section 4. The relative electron
temperature oscillation is very small, as one might expect since the
electrons behave nearly isothermally, and the phase is positive at —VGd).
Neither of these variables is much affected by variations in RT. The
relative ion temperature oscillation, on the other hand, is dependent on

R the amplitude is quite large and increases as RT decreases, while

;
tge phase is negative for instability, but becomes positive when the
plasma is stable. Thus, the characteristics of the ion temperature
oscillation are the most noticeably affected by the presence of the
instability.

Finally, we consider the effect of the assumptibn that the
heat source terms Si and Se are not perturbed for the first order
equations. TFor example, if we had assumed instead that these terms were
proportidnal to the number density, n, the only change in the Y's in
Section 5.1.2 would be that the factor 6(1—RT) in Yll [Eq. (5.13)]
and Y31 [Eq. (5.15) ] becomes 3(1-RT). This affects the growth rate,

in that the last term in Eq. (5.23) now becomes

_, (1—5RT/3)
2 ’
Rm(Z+5RT/3)

and the maximum growth is decreased to about half. However, the plasma
can still be unstable, and the general characteristics described above
are valid. Of course, to treat a specific problem rigorously, one would
have to determine the explicit form of Si and Se "by considering the
physical processes which occur in the experiment being modeled. We have
shown two general cases when instability can arise.

5.2.2 Effect of an Electron Drift

We now consider the stability of the ionzacoustic waves in
the presence of an electron drift V |= veo/(TeO/me)2 . The approximation
technique used in the last subsection to obtain the solution to the
dispersidn relation for anz >> 1 and RT <1 1is used again here
[see Eq. (5.19)]. We find that the real frequency, Qr, is still given
by Eq. (5.21), and that the growth (damping) rate is now
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5/2
n ES/ZIRT ¢, 12y 2L ¢ P (1 —.. )
173 L 2 im 3.2 en TR
m m
3/2 R 7/2 C W2 / \ 2z(1-4R /3)
L2/ ix, . Z ;(1 _ uvm>_ T
9 2 A \" TR 2
Z R (Z+5R_/7/3); 2 : rmw/ R .
z Rm(Z+5RT/ ) 2R _C, r R (Z+5R/3)
(5.27)

The'drifﬁ manifests itself in the electron viscosity and thermal
conductivity terms, and is destabilizing for ‘%V/(Q£Rm) >0, i.e., for
the Wave with phase velocity in the sense of Veo' ‘

‘Turning back for a moment to Section 4.3.3, it will be
recalled that the drift waves were destabilized by an-electron axia1
drift when the drift velocity exceeded the :axial phase velocity .of the
wave. This effect arose when the electron heat transfer eguation was
included to account for finite heat flow along the magnetic field. The
manner in which nonzero electron thermal conductivity can give rise to
instability when an electron drift is present is ilm&stnated in Eq. (5.27).
Although this equation applies to ionﬂacouétiC'waves,'wessaw in ‘Section
4.2.2 that the drift wave branch evoelves into the ion-acoustic branch as
the propagation becomes more nearlyjparailel to the magnetic field. 'Thus,
we expect the'effect!of~électron«drifm to be similar for each, as our
calculations bear out. 1t should be mentioned that the effect of electron
drift on drift waves is more invelved than that implied by Eq. (5.27), in
‘that the dispersion curves for W nonzero :are not symmetrically displaced
about the ¥V =0 curves (see Fig. 4.9). This difference between the
drift'wayeS'ahd the_ionwacowsmic'waves‘willzalso:appear'When we consider
the normal mode solutions.

For the ion-acoustic waves, 'we may wuse Eq. (5.27) to find
the «drift velocity required for instability. This gives

3 ’ ¢ A

1.3/2_ _ 5f2 o -2 3 ..}
v Y2 R ‘ NE &A% A37) ¥R iC 437 . {1 73
0 { R R (Z*SRT/B')C;in*RrrC:ix/B n“-62" (1 .4R_T/ 3)

g 21 4
, Jan/e 11/2 -
[«zT, 0+5'pi‘,0/3 ),/m,1 ]

3. wen dayga ) N ’2:
Z '(’Z+5RT/jB‘)’[‘('3’/2%»()*zcen”‘ ]
(5.28)
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1f we neglect electron viscosity (last term in denominator), and
collisional energy exchange (last term in numerator), Eq. (5.28) reduces
to Eq. (53) of Reference 8, apart from notation. It is clear that the
threshold velocity is sensitive to the inclusion of the collisional
energy exchange, and, as was shown in Section 5.2.1, may be zero,
corresponding to instability driven purely by a temperature difference
Because of this, the threshold velocity calculated

with T > T,
e i

0 0’

8 . .
by Coppi and Mazzucato may be quite inaccurate when TeO > TiO'

Figure 5.4 shows the real x contour mapped into the
Q-plane, without drift and with a drift of V = 4, for the case of
hydrogen (Ri = 1837) with RT = 1/2 and 1/10. These results were
computed from the full dispersion relation, although approximations
given by_Eqs. (5.21) and (5.27) give accurate results for their range
of validity. It is seen that drift destabilizes the wave with phase
velocity in the sense of the drift, and stabilizes the wave with phase
velocity in the opposite sense. For the case RT = 1/10, the drift of
V = 4 roughly doubles the maximum growth rate predicted in the absence
of drift. The spatial growth rate can be found by using Egs. (5.26)
and (5.27).

The amplitudes and phases of the normalized first order
variables ®1n’ Teln’ and Tiln corresponding to these solutions are
shown in Fig. 5.5. We have omitted some of the curves for RT = 1/2
when they nearly coincide with the curves for RT = 1/10. Comparing
these curves with those for V = 0, i.e., Fig. 5.3, we see that the

amplitudes of ¢1n and Ti are only slightly affected by the drift,

1n

while that of Te increases by a factor of ~2 for % > 0, and ~4

1n
for # < 0. Thus, as for the drift waves in Section 4.3.3, the electron

drift increases the relative amplitude of the electron temperature

oscillations. For the phases, both ¢1n and T have roughly
. e

. 1n
opposite phase shifts depending on whether # >0 or % < 0, with

# > 0 corresponding to the negative phase shift. On the other hand,

. >
for either % < 0, the phase of Ti is nearly the same as when V = 0.

In

Thus, while the behavior of Ti is dependent on RT but not on V,

1n

the reverse is true for @ and T .
) 1n eln
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Fig. 5.4 Map of the real % contour into the (-plane via Eq. (5.16) for
the ion-acoustic wave brach with the parameters as in Fig. 5.2.
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Fig. 5.5(a) Values of amplitude of the normalized variables ﬁln’Teln’

and Tiln for ths ion-acoustic wave in Fig. 4.5 with
>

Voo = 4(Te0/mi) . ——, Ry =1/2; ———-, R = 1/10.
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1/10 are omitted if they essentially coincide with RT
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5.2.3 Normal Mode Solutions

In order to describe the behavior of these ion-acoustic
waves in an axially bounded system, we must solve the dispersion
relation for complex 1 and complex #, as discussed in Section 2.

First, we consider the V = 0 case. Contours of constant (K: - Kr)
and constant (%I - %;) are mapped in the {l-plane, where increasing
values of (K: - K;) correspond to solutions for increasingly lossy
reflections [see Eq. (2.28)]. The + or - superscript refers to waves
propagating in the direction of increasing or decreasing 2z, respectively.
This map is shown in Fig. 5.6 for RT = 1/10, where the vertiéal scale

is expanded by a factor of two over Figs. 5.2 and 5.4. We see that all
the normal modes may be stabilized by increasing the reflectiop loss at
the boundaries.

In performing this mapping for the case when an electron
drift of V = 4 is present, we find that the effect of the electron
drift appears to cancel out of the normal mode solutions. That is, the
curve for (KI - %;) = 0, which corresponds to lossless reflections,
and RT = 1/10, is the same as the curve for V = 0 and RT = 1/10
shown in Fig. 5.6. In fact, the whole mapping is the same as found for
the V = 0 case. This is due to the normal mode being made up of a wave
propagating in each direction, one of which is amplified by the electron
drift, while the other is damped by the same amount. This can be seen
from Eq. (5.26) used in conjunction with Fig. 5.4. The effect of a
temperature difference, on the other hand, is to amplify each wave; thus
the temperature difference can contribute to the temporal growth rates
of the normal modes.

The fact that the destabilization due to the electron drift
disappears for the normal modes of an axially bounded system underscores
the potential importance of the instability due to a temperature
difference. For example, in a plasma which has an axial electric field
applied (i.e., a DC current present), the electrons will heat up due to
joule heating. The current driven ion-acoustic instability cannot
contribute to the temporal growth rate of the normal modes because of the
restrictions mentioned above, but instability will occur for the normal

modes if the temperature ratio, RT, becomes small enough. In this
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connection, it should be noted that the wave propagating in the direction
of the electron drift can exhibit spatial growth, so that there can be

an enhancement of noise level along the system in the direction of this
drift.

On the other hand, for toroidal systems, such as the
stellarators considered by Coppi and Mazzucato,8 periodic boundary
conditions apply, and the normal modes consist of separate ion-acoustic
waves propagating in either direction. 1In this case, the electron
drift can have an effect on the stability of the normal modes as studied

in Section 5.2.2.

5.3 1Initial Value Problem: The Equilibrating Plasma

5.3.1 Steady State Plasma

In this subsection, we consider a plasma for which there
are no external heat sources, so that S.1 = Se = 0. We take the system
to have prescribed electron and ion temperatures at time t = 0. As
before, we include the effect of an axial electric field which gives
rise to the electron drift in Eq. (5.7) and also to joule heating of the
electrons. We then allow the zero order temperatures to change in time
as described by solutions to the heat transfer equations, i.e., Egs.

(5.3) and (5.6). These equations yield

\Y) \Y -
el 2 Cr ei _2 ei TiO vei a RT)
=3 5 vV - 2 __5(1_RT)’ T = 2 = 7 (5.29)
el R R i0 R T
m m m

where the dot denotes time differentiation. 1In order to obtain simplé

analytic solutions to these equations, we assume veo = constant, and

normalize the time variable to T = zveit/Ri. This yields the solutions

T .(0) T, . (0)
0 0
T o™ = —%—[1 + exp(-27)] + —17——-[1 - exp(-2T)]
2
C V7 (0) T_,(0) »
+ 12 [1 + 27 - eXP("zT)] )
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T, (9 T o(0) S
T,o(T) = —5—[1 + exp(-2T)] + ——1 - ?xp‘—ZT)]
c_ V()T __(0)
- = 1280; [1 - 27~ exp(-27)] . (5.30)

In Fig. 5.7, we show thesersolutions‘for TeO(O)/TiO(O) = 10, when
V=0 and V(0) =3. For the V =0 case, the temperatures relax to a
common value of [Teo(0) + Tio(d)]/z in a time T ~ 2. When V(0) = 3,
the relaxation is s;ower, and both the electron and ion temperatures
.eventually increase due to joule heating of the electrons.[the Vz terms

in Eq. (5.30)].

o

TiO/ TiO(O)’ Teo/TiO(O)
o

o
N

T

Fig. 5.7 Relaxation of electron and ion temperatures given by

Eq. (5.30). , V=0 ; —=——— , V(0) = 3

5.3.2 Perturbed Plasma

In. perturbing the-basic equations to first order, we assume

the variables n, E, Ve’ Vi Te, and Ti have the form
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n(z,t) = n_ + nl(t) exp(~ikz) , (5.31)

0

where Teo and TiO are now functions of time. We make all the other
assumptions quoted in Section 5.1.2, and use the same approach to
derive the first order equations. By using the continuity equations
{Egs. (5.1) and (5.4)], we eliminate the velocity variables from the

combined momentum transfer equations [Eqs. (5.2) and (5.5)]. This

yields
" L1/2 5/2 .
2 |2
1M 4 R Sl B S
2
vei (0] 3 Rm Z2 Rm vei n0
2 R Kz 2T
" 4 WV M By i1 wm® Te1
| T 13 CnZ Rt TR ot 3 t5 T =0
R m 0 R i0 R e0
m m m

(5.32)

The first order ion heat transfer equation [Eq. (5.3)] gives a second

equation
. . .1/2 2 5/2
37 (1- "
e R L 3 1 Tin (20 CytByp 3z | i1
vt atis -l R B Rvasl i T * 3 )T
Vei M0 R° R 0 ei "i0 R Z R i0
m T m m
Z(1-3R_) T
3
£ 35 2T Tel -0 . (5.33)
R_R el
T m

Finally, the first order electron heat transfer equation [Eq. (5.6)] is

2
o)
1 n1 WV rV 3 n1 SRT T 1
B v R At S I-w e
ei 0 m R Ol R T
m m m 0
T o) v2 (1-3R )
B L lel (L ,3xw 37 . .2 3 o) Tei| _,
2V T 2 2 2 2 =
ei "e0 Rm Rm X 2 Ri TeO

(5.34)
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If we assumed a time dependence of exp iwt, these equations would be
very similar to Eqs. (5.10), (5.12), and (5.14) found in Section 5.1.2.
However, we leave the time dependence unspecified for pow, and find

2 .

58 ' and 'nl/nlvéiI’N n/Rm, Egs.
(5.32) - (5.34) may be reduced to the single third order differential

2 -
that, under the assumptions # >> Rm

equation

L Ey
—— ——— D n = . .
-+ lo g+l ™ 0 (5.35)
AV R AV el
el el

The coefficients of this equation are given by

2 , 2 5/2 2
2
r 7 4 _ S g8/2 ¢y R 23/ i 5/2 2
0~ 2*t32 2 tT3 R *3 2 Ry +t3
C_ R R m Z°R R
eX m m m m
w2 NV 4y 2
T ==z +5R/3) - i -izz e nt
1 R T C RS 3 R3 en
m eX m m
: 2.2 2’ 2
U -
. 2 CHV 23/2 Cix s/2 2\ #2 2" (1-R )
2 32— *\=3 SR +3) 5 @R+ 7
R Z°R_ R°/ R R
m m m m . m

(5.36)

Equation (5.35) is the counterpart of Eq. (5.19) for the maintained plasma.

5.3.3 Almost Time-~harmonic Solutions

In order to solve Eq. (5.35), we assume that.the time
variation of the perturbed quantities is almost harmonic, and can be

written as

nl(t) =An1 exp i f wdt , : (5.37)

where Iwrl >> lwil,;LQ/w|. We then may ekpand the derivatives in Eq.

5.35) to fi i ion t Q = : Q. = )
( ) ind an approximation to r wr/vei and Qi wi/vei’
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2 2 . .
recalling that we have assumed « Rm >> 1, RT < 1. This yields an Qr

which is the same as was found for the maintained plasma [see Eq. (5.21)]

i
Q Z + 5RT/3)2

r

— = % . 5.38

® R ( )
m

For the growth (damping) rate, we obtain

5/2
N h SRS A g
P T i 3 en OR_

2 P
t 3 g2 1 R rm
m m
7/2
+23/2 *r cu2+_§__<1; “V>+E__f_T__
9 2 ix 2 TR 3 2
3
VA Rm(Z+5RT/3) 2Rmce,X rm Rm(Z+5RT/ )
(5.39)

Here Qi is nearly the same as in Eq. (5.27) for a maintained plasma,
except that the last term, due to collisional energy transfer, is now
always positive. Thus, no instability can arise due only to an initial
temperature difference in an equilibrating plasma, and one cannot expect
an enhancement of the collisional equilibration by ion-acoustic waves.
This conclusion is also reached in a similar analysis given recently by
Kaw and Sundaram.82 On the other hand, an electron drift can still
produce instability, but, for moderate drifts, it will be quenched by
the rise of the ion temperature in a time less than an e-folding period.
For example, with an initial drift of V = 3, and RT = 1/10, as in

Fig. 5.7, the initial maximum growth rate is

W, - —— . (5.40)

At this value, the wave would e-fold in a time T a~ 2. However, as can
be seen from Fig. 5.7, the ratio RT has already increased to 1/2 at

T a 1; this is sufficient to quench the instability. This approach
becomes less certain for larger drifts, since the zero order quantities
change quite rapidly [see Eq. (5.30)]. Also, as the electron temperature

, . 2
increases, the electron mean free path increases as T

0’ and the plasma

becomes less collisional.
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5.4 Applications

To determine the importance of ion-acoustic instability for
physical systems, one needs to compare its growth rate with that of
other instabilitieés which might be present. ‘For laboratory magneto-
plasmas, there is usually a density gradieﬁt perpendicular to the
magnetic field, so that drift waves can be unstable. The maximum growth
rate for the drift wave is ‘v-mee/S, where Whe is the electron
diamagnetic frequency,and m 'is the azimuthal mode number. "This

maximum growth rate is valid for T, = Te Since the ion-acoustic

0 0°
instability can occur due to a temp;rature difference for Tio < TeO’
it is useful to compare the numerical values of the growth rates for
realistic parameters. The diamagnetic frequency and fhe collision
frequency vei are both indepéndent df mass, while the ion-acoustic
growth rate is inversely proportional to mass. With this in mind, we
consider a hydrogen plasma which has the same electron diamagnetic
frequency and collision.frequency as in the Q-machine experiment
studied in Section .4.4 (for the -m-= .2 mode as in Fig. 4.3).‘ This gives
'a'maximuﬁ'drift wave .growth ‘rate for the m = 2 mode of —wi‘~'5 X 103
sec_l, while the ion-acoustic instability would have a maximum growth
rate of ‘-wi'v 1 X 10 se‘é—l -for the same collision frequency and
0 Higher ofder azimuthal modes for the drift wave have
higher upper limits on the growth rate due to the dependence on m, but

<.
TiO Te

they are'also more strongly damped by-ion collisional viscosity. -In
any eveht, it is clear that the ion-acoustic waves can have growth
rates comparable to or larger than those - -for drift waves.

Another important point is that the drift waves are stabilized by
even moderate wavelengths (see-Fig. ‘4.5), while the ion-acoustic waves
can be unstable for shorter wavelengths, of the order of the electron
‘méan free path. Thus, in short collisional plasmas, the drift~Waves
can be stabilized or have their growth rates greatly reduced by the
normal mode requirement of-short axial*wavelengths, while the ion-
acoustic growth rate is relatively unaffected.

‘ Since-ion-acoustic: waves ‘also ‘appear in weakly ionized_plasmas,46
it is of interest to determine if the two-temperature instability might

occur there. The presence of neutrals is introduced by adding a
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collision term -nmi\)invi to the right hand side of the ion
momentum transfer equation, i.e., Eq. (5.2). Here vin is the ion-
neutral momentum transfer collision frequency. We neglect electron-
neutral collisions, since in adding the electron and ion momentum

transfer equations in the absence of drift, the term proportional to

\Y is smaller than the Vv, in terms by a factor R_ . This is due
en in m i
46
to the relation ven/vin’v Rm which holds for a number of gases.
The effect of ion-neutral collisions is to add the term Vin/zvei to

the expression for the growth rate, i.e., Eq. (5.23). This corresponds
to damping. Thus, for the ion-acoustic wave to be unstable due to a
temperature difference in a plasma with neutrals present, vin must be
smaller than the maximum growth rate of -~ Vei/Ri. However, for
typical weakly ionized plasmas such as the positive column, this

7
condition is not met, and, even though Ti << TeO’ two-temperature

0
ion-acoustic instability should not occur.

For naturally occurring plasmas, there are several possible
situations in which ion-acoustic instability might arise. The daytime
ionosphere does have a sufficient temperature difference between the
ions and electrons'83 to produce instability. However, further
investigation reveals there is enough neutral gas present84 to cause the
ion-neutral collisions to quench the instability.

In the case of the solar wind, Cuperman and Harten13 have shown
that the observed radial profiles of density and temperatures can only
be explained by the two-species fluid equations if one assumes a heat
transfer between electrons and protons some 30 times the collisional
value., Using the collisional value gives an ion temperature near the
earth which is lower than measured. It has been suggested that such an
enhanced heat transfer is due to turbulence in Alfven waves originating
at the sun. Another possibility which should be investigated is that

the solar wind is unstable to low-frequency ion-acoustic waves (for

Ti < Te)’ and such turbulence accounts for the enhanced heat transfer.
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6. CONCLUSIONS

6.1 Review of the Research

The primary purpose of this work has been to study the characteristics
of low-frequéncy, quasistatic instabilities of a fully ionized plasma. A
moment equation description has been used for both the ions ahd the
electrons. Before these instabilities were studied, Section 2 was
devoted to developing a general method for interpreting the behavior of
waves in a bounded system from solutions of the dispersion relation for the
waves in an infinite medium. This was an extension of the stability
analysis given by Briggs19 for an infinite system. The result is that
the dispersion relation, D(wnE) = 0, must be solved for complex ’5 in
general, as determined by the reflection coefficients of the boundaries.
This approach gives a very useful technique for determining the normal
mode frequencies and corresponding wave profiles for bounded systems
which can be described by the moment equations. The response of such a
system to a steady forcing function source was also given.

In Sections 3 - 5, the low-frequency instabilities have been studied
in detail. The equations describing the plasma were perturbed about zero
order solutions to determine the dispersion relations for the waves. The
dispersion relation given by Eq. (4.24) for rectangular geometry illustrates
the basic wave types considered. For reference, the branches of this
dispersion relation are plotted in Fig. 6.1, where the parameters are as
in Fig. 4.3. The normalized frequency, w, and axial wavenumber, K, are
given by Eq. (4.27). 1In Section 3, the flute wave has been studied for
propagation perpendicular to the axial magnetic field (K = 0) in a
cylindrical plasma column. This wave is represented by branch II in
Fig. 6.1. A differential equation was derived to describe the wave,
which can be driven unstable by a radial electric field. When ‘the
electric fielg was a linear function of radius, the column rotated
uniformly due to the E X,E drift. 1In this case, instability was due
to the centrifugal force on the ions in the presence of a radial density
gradient. We obtained an analytic expression for the eigenfrequency
which included the effect of the column being radially bounded. This

: : . . 6
led to a generalization of some numerical results found by Chen 3 on the
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effect of the column being radially bounded. If the effect .of
centrifugal force were included in the solutions shown in Fig. 6.1 by
including a gravitational force, branch I and branch II would éouple
together for small K to produce one stable wave and one unstable wave.
These would correspond to the pair of eigenfrequencies giveh by Eq."’
(3.35). For nonuniform rotation of the column, a numerical procedure -
was used to solve the differential equation for the wave solutions.

8
? was illustrated

The transition to a Kelvin-Helmholtz instability3
for a sharp rotational velocity shear. These numerical solutions also

gave the eigenfunctions of the waves. Finally, two instabilities in a
hollow cathode arc experiment were idéntified as being unstable flute
waves.

In Section 4, we have considered propagation at an angle to the
axial magnetic field (K # 0), and concentrated on the collisional
drift wave. This corresponds to branch I in Fig. 6.1 for small K
(< 100). The drift wave can be unstable due only to a density gradient.
A complete dispersion relation was derived in rectangular geoﬁetry, and
it included the effects of'ion axial motion, electron heat flow, and a
zero order electron axial drift (a current). The solutions of the
dispersion relation were compared to those of other authors, who
~ neglected some of the effects included in Section 4. The relative
magnitudes and phases of the first order wave variables were calculated.
We also showed how the characteristics of the entropy45wave (see Fig.
4;6) differ from those of the drift wave. The solutions fo the
dispersion relation were interpreted in the manner prescribed in
Section 2 for axially bounded systems. This allowed us to corréctly
explain the results of a drift wave experiment in a Q-machine.47 In
'addition, we showed that a zero order electron drift can increase the
growth rates of the normal modes of the drift wave for a bounded system.

As the angle of propagation becomes more nearly parallel to the
. magnetic field (K large), branches I and III in Fig. 6.1 become a pair
of ion-acoustic waves. The stability of these waves has been studied
in Section 5 for propagation parallel to the magnetic field. The ion-
acoustic waves can be driven unstabie by an electron drift in a collisional

plasma if electron thermal conductivity is included, as shown by Coppi
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and Mazzucato.8 We have extended this result to show that inclusion
of collisional energy exchange between the electrons and ions can
significantly decrease the threshold velocity for instability when

Ti < Te. Additionally, we have shown that the collisional energy
transfer can cause instability in the absence of an electron drift.
The relative magnitudes and phases of the first order variables were
also given. Further, it was found that, for an axially bounded system,
the electron drift does not contribute to the temporal growth of the
normal modes. These results hold for a plasma which is maintained in
the steady state with Ti < Te. For the case of a plasma equilibrating
in time (Ti - Te)’ it was shown that the collisional ion-acoustic
instability should not grow to a significant level.

6.2 Suggestions for Future Work

For the linear analysis of the waves we have considered, there
are several extensions which would beiof interest. First, for
propagation at an angle to the magnetic field, the restriction w << wc1
could be relaxed. This would allow investigation of the region around
wci’ where ion cyclotron waves can propagate, and would show the
transition to such waves. Second, the jion-acoustic instability could
be treated for specific systems, such as the solar wind or a Q-machine
with a current, in which heat sink or source terms were identified. 1In
solving the zero order and first order equations, numerical procedures
would probably have to be used. It would also be useful to determine
the effects on the ion—-acoustic instability of propagation at an angle
to the magnetic field, and the presence of a radial density gradient.

There are several suggestions which can be made about the extension
to a nonlinear analysis of the instabilities studied. PFirst, the
stability analysis of Section 2 for bounded systems shows that in general
the linear wave amplitude profile in a system will not be uniform in
space. Thus, nonlinear analyses which assume an infinite medium with
uniform wave amplitude must be viewed with caution; future nonlinear
analyses should attempt to determine the effect of a nonuniform wave
amplitude. Second, Horton and Varma9 have recently suggested that
small scale turbulence may cause ''collisionless'" plasmas to appear

collisional for waves, sO that a moment equation description of
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instabilities would be adequate. A more quantitative evaluation of

this effect would bg helpful.

162




Appendix A

RESPONSE OF A BOUNDED SYSTEM TO
AN ARBITRARILY POSITIONED SOURCE

We use the same model as in Section 2.2.1, except that now the source
has the form s(t,z) = fo(t) 6(z-z0). The medium is described by Eq. (2.9)
while the boundaries are described by Eq. (2.12). To evaluate the response,
we use the approach developed in Section 2.2.2, and model the reflected
waves by an infinite series of image sources. The resulting model is
shown in Fig. A.l. The image source values are still given by Egs. (2.14)
and (2.;5), but the source fn is now located at nL + zd(-l)n. The
shaded area again denotes the reciprocal medium with dispersion relation
D(w,—k)v= 0. The response of each source in this mixed medium can be
found by the procedure'described in Section 2.2.2, and illustrated in
Fig. 2.7. This yieldslthe result that any source fn at z = nL + zo(—l)n
can be replaced by a source Tn at =z = nL/2 + (l—A)zo, which is subject
to the regular medium only. Here A =1 if n is odd, and A = 0

otherwise. The f '

n S are given by

?n = exp[— ikt(nL/Z - AZO{]fn , (A.1)
where ki is used for n >< 0. Equation (A.l) is the generalization
of Eq. (2.19) for which zy = 0. The total response in the bounded
region (—L/2 < z < L/2) is obtained by using Eqs. (2.3) and (2.4) to
find the responses to all of the ¥n sources, and adding the results.
This gives

©4+ig

O n
. 1 —ifo(w) 4 _ 2 . }
V(t,z) = — ———— qexp[-ik (z-z,.) ]+ A(=z) 2y exp[-im(Q +& )Pexp int dw ,
27 kt -k 0 m=1" 12
-0 'O‘ ’
o (A.2)
+ > _
where k is used for =z < ZO' The other quantities in Eq. (A.2) are
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* k_)(é' +2) FO 4 itnlo. |, (A.3)

ol
It

(k

Ql
1l

+ -\ L ;
(" - k)G - 2z) FO, 4+ u;nlozl, (A.4)

and
N

A(z) = {(1+exp ial)exp[— ik_(z—zo)]+‘(1+exp iaz) exp[- ik+(z-z0)%.
(A.5)

Note that these equations indeed reduce to Egqs. (2.20-2.23) for the
special case z, = 0.

We now prove that the form of the asymptotic natural response is
independent of the source position, Z- For the natural response, fo(t)
is taken to be an impulse function, so fo(w) =1 1in Eq. (A.2). The

normal mode frequencies are defined by the relation
0. + O = 2nxn , (A.6)

where n 1is an integer. This is the condition for branch points in the
integrand of Eq. (A.2) due to the reflected waves, and is the counterpart
to Eq. (2.25),where z_= 0. However, from Eqs. (2.21), (2.22), (A.3)

0
and (A.4), we have

a, + o =0, + 0. , (A.7)

so Eqs. (2.25) and (A.6) are in fact identical. Thus, Eq. (2.28), which

gives the restrictions on (k+ - k_) for the normal modes, is independent

of ZO’ as is Eq. (2.29), which gives the normal mode frequencies, wn.
In addition, we show that the axial profile of the asymptotic natural
response is independent of % As in Eq. (2.27), the akial profile is

given by A(z). Using Eqs. (A.3) - (A.6), A(z) can be reduced to
— 1 + L -
A(z) = p{lp112 exp i(6-kK'z) + lozle exp[-1(p+k z)]}, (A.8)

where ¢ = nx/2 * (91—92)/4. The constant P has the form
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[+ - L + .- %0 o
P =2 expl(ki—ki) i i(k +k ) ) + 1nn] cos - | (A.9)4

and contains all of the z, dependence, but is independent of z. Thus,
-the axial dependence is given by the terms within the brackets of

Eq. (A.8), and can be reduced directly to the profile given by Egs. (2.41)
and (2.42).
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Appendix B

ION VELOCITY DUE TO A RADIAL ELECTRIC FIELD
IN CYLINDRICAL GEOMETRY

In Section 3.1.1, we found the ion fluid velocity in the approxi-
mation that the rotation frequency vo/r is much less than Wi We
now consider the solution to the ion equation of motion for larger
electric fields; first from the fluid equation [Eq. (3.3)], for an
electric field which increases linearly with radius, so we may neglect
viscosity; and second, from the single particle equation of motion. We
neglect the density gradient as contributing only a small diamagnetic
drift for these larger fields; this allows a more direct comparison
between the methods. The second method will clarify the understanding
of the actual orbits of the ions.

With the electric field a linear function of radius, the radial

and azimuthal components of Eq. (3.3) become

2.

avr Vg
m <yr - v -:;):: ek + eVGB’ -(B.1)
and
ov VaV
6 8y
mélr Sz + —r—-> = - evrB y (B.2)

respectively. Here Y = Vrir + vaiss and we have dropped all the
subscripts 1i. The coordinate system is shown in Fig. 3.1. Equation
(B.2) can also be written as

ave 2

—_ — = .
vr 3¢ = + wc o, (B.3)

where w, = eB/m is positive. Thus, we may have two solutions: either
v, = O, or the terms in the bracket add to zero. We denote these by
Solution I and Solution II, respectively. Using Eq. (B.1), Solution I

becomes
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w T _ z
v =0, ——3-—1.+(-_—4E> , (B.4)

where we have required vy = 0 for E= 0. For Solution II, we

require Vg to remain finite as r = 0, and find

wl=

r 2 w rB 2
c

wr [ . wr
‘v =_C_(4E —1> 3. Ve = - c . (B.5)

Since the velocities must be real, we use Solution I for 4E/(wch) <1,
and Solution II otherwise. We show the behavior of the velocity as a
function of the electric field strength in Fig. B.1l. Also shown is

the small electric field approximation used in Section 3.1.1 [see Eq.
(3.8)]. This is obtained by expanding Eq. (B.4) to second order in E
for small 4E/wch, to give

f v
E
Ve = VE (1 (_Q_I'> N (B-6)
c
where v_ = - E/B. Figure B.l shows the validity of this appfoximation,

E
if we restrict ourselves to rotation frequencies much less than wc.

The asymmetry of the rotation velocity for vE >0 and vE < 0 1is due
to the centrifugal force, as mentioned in Section 3.1.1, which always
acts outward, opposing or aiding the electric field force for vE >0
or vE < 0, respectively. The behavior of the solutions negr
VE/wcr = - 1/4, where the solutions change abruptly, becomes clear if we
consider the motion of a single particle.

The equations of motion for a charged particle in cylindrical
geometry with an axial magnetic field can be readily obtained using a

, 85 . .
Hamiltonian method. The canonical equation for angular momentum gives

a, 2z .
%—d—t-(re)+eBr= o , : (B.7)

where the dot denotes the time derivative. Assuming that the particle
starts from rest at some position r = a, Eq. (B.7) can be integrated to
give
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Ve=1‘é=-'—c(l‘ - a ). A (B.9)

mf2 mrzéz eEr | . a2‘
- 1-32 ) = ]
5t 3 5 = o , (B.10)

where the last term is the potential energy. Using Eqs. (B.9) and

2 a2 eEr wirz a2 : |
r = 1 - —2 —m_" - 2 [l - —-2-} . (B-ll)
T ; r

At the turning points of the orbit, the radial velocity, f, must be zero.

(B.10), we find

One such point is r = a, but for the orbit to be closed, we must have
a second zero; this occurs when the terms in the second bracket of Eq.

(B.11) add to zero, i.e.,

2
E a
?;;;5723 = 1 - ;5 (B.12)

The left-hand side of Eq. (B.12) is independent of r, since E < r, and
the right-hand side is always smaller than 1. Thus, the condition for
a second turning point of the orbit cannot be satisfied if
w rB
c

E > 2

(B.13)

This is just the condition for which we use Solution II Eq. (B.5) in the
fluid equation approach. Physically, this means that the particle orbits
are not closed,'and since this occurs for a positive electric field, the
ions are accelerated outwards. As az/r2 ‘becomes small compared to 1,
the angular frequency of the ion approaches - wc/2 [see Eq.. (B.9)],
which is cohsistent-with Eq. (B.5) for the fluid approach.

We have seen that the change from Solution I to Solution II in the
fluid equation approach occurs just when thé ion orbits become qnbounded,
and the radial guiding-center velocity becomes nonzero. Thus, even

though the two solutions join abruptly (see Fig. B.l), the fluid
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equation describes the motion of the particles qualitatively, even for
large electric fields. On the other hand, the fluid approach neélects
the large ion orbits for these large fields (when the electric field
effect dominates over thermal motion); they might be important for
determining the finite Larmor radius effects on plasma waves.

In solving the fluid equations, we have essentially assumed that
the plasma density is uniform by neglecting the diamagnetic drift term.
Upon closer examination, this presents some difficulties for Solution
II, in that the continuity equation [Eq. (3.2)] is not satisfied. This
arises from the nongzero vr in Solution II, since nV - vrir £ 0. To
balance this term in the continuity equation, one needs a source term
to make up'for the radial loss of plasma. For a more rigorous treatment
of this problem, one should solve the electron and the ion continuity
and momentum transfer equations self-consistently, in order to determine
the velocities, the density profile, and the electric field profile for
a given system. This has been done, for example, for a weakly ionized
plasma in a positive column.86 We do not pursue such a study here; the
purpose of this appendix has been to illustrate the type of ion motion

which arises with strong electric fields.
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Appendix C

EFFECT OF ELECTRON TEMPERATURE FLUCTUATIONS ON WAVES
PROPAGATING PERPENDICULAR TO THE MAGNETIC FIELD

In this Appendix, we prove that the electron temperature has no
effect to any order on the waves studied in Section 3. This means that
Eq. (3.18), which gives the relationship between ®1 and n1 when the
isothermal assumption is made, is valid even if the electron temperature
is considered as a wave variable. For generality, we assume that no(r)
and Teo(r) are arbitrary functions of r.

From Eq. (3.13), we can solve for the electron velocity

V = V_ + vV , (c.1)

where FVD and vE are the diamagnetic and 'E X‘E velocities

i xv
i 1 (nT )

- - .2

Ip neB ’ (€.2)
'iz X E

»-XE = - ———B—-— ) (C-3)

and iz is the unit vector in the direction of the magnetic field. 1If
we insert the velocity from Eq. (C.l) into the continuity equation,
Eq. (3.12), and use the result

Vy t i % V(T

7, - — - -
L (ny) = ) =0 , (C.4)

the continuity equation becomes

%% + Vl . (QXE) =0 . (C.5)

Equation (C.5) is valid to all orders, so the electron temperature drops

out of the analysis. The first order version of Eq. (C.5) is
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) mTio 29 e@l ) mEO fl c.6)
eBr n T. = \Y* T B/\n o ’ ‘
io. , 0/ 4.

For the Gaussian number density distribution in Eq.'(3.1),‘this reduces
directly to Eq. (3.18), which we derived making the isothermal assumption.
This proves that for the dispersion characteristics of these waves we
may neglect even a zero order gradient in the electron temperature, and
use the isothermal assumption. o

On the other hand, the aone result does not imply that there are
no electron temperature fluctuations associated with these waves. Indeed,
we find that there can be such fluctuations, and derive an expressioﬁ
for them below. We use the electron heat transfer eqﬁation for variations

5
perpendicular to the magnetic field, which can be written as

3 9T dn 5 nT,
2 h—=S5- an _92¢ . a v _ .
2 " at edt 24 ep @y X ViT) =0, (€.7)

where d/dt = 3/3t + Y, 71.

We use the identity46
nT

e L3
v ¢ e (i v =
1 eB giz XV Te)

Nl o
i w
-]
<
<
‘...
L]
)
|
L]
<
<
=1

and Eq. (C.l), to reduce the heat transfer equation to

3 _(d o d '
5 D (5? +AXE VL) Te - Te (-5¥ +‘XE Vl>n =0 . (C.9)
Also, from Eqs. (3.14) and (3.16), we have to first order

<'Eo> A Teo fim 21 - b - }

\'A + V —_—]iln + — — — —_—
~0 eB lr T ,ir * T ~B
el e0

g " Ygo t¥g1 ¢ (C.10)

B

where the prime denotes differentiation with respect to r. The first

order heat transfer equation then yields
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Tey 2%\ G/ @i/ny -/t ) md,
-2 (__ + = ). (C.11)

=0 n, w + mEO/?B r

Since w = - mEO/rB is not, in general, an eigenfrequency as seen from
Eq. (3.35), we may eliminate ¢1 from Eq. (C.11), by using Eq. (C.6).
This gives an expression for the electron temperature fluctuations:
/
Ter (Teo/Te& !

= L =5 — . (c.12)
Teo  (Mg/ny) 1y

Thus, even though the dispersion relation for the waves is not affected
by the isothermal assumption for the electrons, there will be

temperature fluctuations if a zero order temperature gradient is present.
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Appendix D
ION VISCOSITY TENSOR INCLUDING ION-1ON COLLISIONS

We use rectangular geometry, with the magnetic field in the z-
2
direction (see Fig. 3.2), and assume wci >> Vii' The components of the

viscosity tensor given by Braginskii are

uM n

N = -2+ W ) - W -W ) - W,
XX 2 " xx Yy 2 " xx vy 3 xy
n0 nl
= - — w - = -
nyy 2(WXX + yy) 2(Wxx Wyy) + Mg ny s
T = =
zz nowzz
N3
=7 = - w  — - 1)
nxy yx M1 Xy + 2(wxx Wyy) ’ (D-1)
= =- w -
Txz zX Ny Yxz n4 wyz ’
T - T = =-
yz zy n2 wyz + n4 Xz

.We need the definition

dv dv
it ik 2y
= - — v .2
w{,k 5x. t 3% 3 4,k Iy v (0-2)
k L
. . . s . o
where Vi& is the velocity component in the x& direction (xl,xz,x3
Xx,y,z for rectangular geometry), and 6& K is the Kronecker delta.
’
Finally, we have
T, BT\ (V, \ TN
i 3 i ii 1 i
= 96| —— = = _— = = =|— =
Mo =0 <::>’ ) 1o(w ><w ./’ Mg =%y Mg 2<: .>’ Ny = Mg
ii ci ci ci
(D.3)

. . - . . 5
where Vii is the ion-ion collision frequency. This is defined as
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-8 2m ZS
v, =3.3X 10 x<__2 2 (D.4)

where A = 23.4 - 1.15 log n + 3.45 log Te is the Coulomb logarithm
(for Te < 50 ev), mp - and mi are the proton and ion masses, Ze 1is
the charge of an ion, e 1is the electronic charge, n 1is the number
dehsity in cm_B,Aand Ti and Te are the ion and electron

- temperatures in electron volts.

Likewise, the electron-ion collision frequency for momentum

5
transfer, Vei’ is given by

V . =2.9X 10 . .
oi = 2:9 % 10 ;575 ~ (D.5)
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