32 research outputs found

    Cupriavidus metallidurans NA4 actively forms polyhydroxybutyrate-associated uranium-phosphate precipitates

    Get PDF
    This project was funded by SCK CEN (Belgium) through the PhD project of Tom Rogiers.Cupriavidus metallidurans is a model bacterium to study molecular metal resistance mechanisms and its use for the bioremediation of several metals has been shown. However, its mechanisms for radionuclide resistance are unexplored. We investigated the interaction with uranium and associated cellular response to uranium for Cupriavidus metallidurans NA4. Strain NA4 actively captured 98 ± 1% of the uranium in its biomass after growing 24 h in the presence of 100 μM uranyl nitrate. TEM HAADF-EDX microscopy confirmed intracellular uraniumphosphate precipitates that were mainly associated with polyhydroxybutyrate. Furthermore, whole transcriptome sequencing indicated a complex transcriptional response with upregulation of genes encoding general stress-related proteins and several genes involved in metal resistance. More in particular, gene clusters known to be involved in copper and silver resistance were differentially expressed. This study provides further insights into bacterial interactions with and their response to uranium. Our results could be promising for uranium bioremediation purposes with the multi-metal resistant bacterium C. metallidurans NA4.SCK CEN (Belgium

    Trichostatin A Enhances Gap Junctional Intercellular Communication in Primary Cultures of Adult Rat Hepatocytes

    Get PDF
    The effects of histone deacetylase inhibitor Trichostatin A (TSA) on connexin (Cx) expression and gap junctional intercellular communication (GJIC) were investigated in primary cultures of adult rat hepatocytes. GJIC was monitored by using the scrape-loading/dye transfer method. Immunoblotting and immunocytochemistry were used to investigate Cx protein levels and localization. Cx gene expression was studied by means of quantitative reverse transcriptase-polymerase chain reaction. TSA increased Cx32 protein levels and affected negatively the Cx26 protein levels. The latter was preferentially located in the cytosol of cultured cells. TSA also promoted the appearance of Cx43 in the nuclear compartment of primary cultured hepatocytes. Overall, this resulted in enhanced GJIC activity. It is important to note that the time of onset of TSA treatment was crucial for the extent of its outcome and that the effects of TSA on Cx protein levels occurred independently of transcriptional changes. TSA differentially affects Cx proteins in primary rat hepatocyte cultures, suggesting distinct regulation and/or distinct roles of the different Cx species in the control of hepatic homeostasis. TSA enhances GJIC between primary cultured rat hepatocytes, an interesting finding supporting its use to further optimize liver-based in vitro models for pharmacotoxicological purpose

    Soil microbial community structure and functionality changes in response to long-term metal and radionuclide pollution

    Get PDF
    Microbial communities are essential for a healthy soil ecosystem. Metals and radionuclides can exert a persistent pressure on the soil microbial community. However, little is known on the effect of long-term co-contamination of metals and radionuclides on the microbial community structure and functionality. We investigated the impact of historical discharges of the phosphate and nuclear industry on the microbial community in the Grote Nete river basin in Belgium. Eight locations were sampled along a transect to the river edge and one location further in the field. Chemical analysis demonstrated a metal and radionuclide contamination gradient and revealed a distinct clustering of the locations based on all metadata. Moreover, a relation between the chemical parameters and the bacterial community structure was demonstrated. Although no difference in biomass was observed between locations, cultivation-dependent experiments showed that communities from contaminated locations survived better on singular metals than communities from control locations. Furthermore, nitrification, a key soil ecosystem process seemed affected in contaminated locations when combining metadata with microbial profiling. These results indicate that long-term metal and radionuclide pollution impacts the microbial community structure and functionality and provides important fundamental insights into microbial community dynamics in co-metal-radionuclide contaminated sites

    The usefulness of outcrop-analogue air-permeameter measurements for analysing aquifer heterogeneity: testing outcrop hydrogeological parameters with independent borehole data

    Full text link
    Outcropping sediments can be used as easily accessible analogues for studying subsurface sediments, especially to determine the small-scale spatial variability of hydrogeological parameters. The use of cost-effective in situvmeasurement techniques potentially makes the study of outcrop sediments even more attractive. We investigate to what degree air-permeameter measurements on outcrops of unconsolidated sediments can be a proxy for aquifer saturated hydraulic conductivity (K) heterogeneity. The Neogene aquifer in northern Belgium, known as a major groundwater resource, is used as the case study. K and grain-size data obtained from different outcropping sediments are compared with K and grain-size data from aquifer sediments obtained either via laboratory analyses on undisturbed borehole cores (K and grain size) or via large-scale pumping tests (K only). This comparison shows a pronounced and systematic difference between outcrop and aquifer sediments. Part of this difference is attributed to grain-size variations and earth surface processes specific to outcrop environments, including root growth, bioturbation, and weathering. Moreover, palaeoenvironmental conditions such as freezing–drying cycles and differential compaction histories will further alter the initial hydrogeological properties of the outcrop sediments. A linear correction is developed for rescaling the outcrop data to the subsurface data. The spatial structure pertaining to outcrops complements that obtained from the borehole cores in several cases. The higher spatial resolution of the outcrop measurements identifies small-scale spatial structures that remain undetected in the lower resolution borehole data. Insights in stratigraphic and K heterogeneity obtained from outcrop sediments improve developing conceptual models of groundwater flow and transport
    corecore