57 research outputs found

    MODISTools - downloading and processing MODIS remotely sensed data in R

    Get PDF
    Remotely sensed data – available at medium to high resolution across global spatial and temporal scales – are a valuable resource for ecologists. In particular, products from NASA's MODerate-resolution Imaging Spectroradiometer (MODIS), providing twice-daily global coverage, have been widely used for ecological applications. We present MODISTools, an R package designed to improve the accessing, downloading, and processing of remotely sensed MODIS data. MODISTools automates the process of data downloading and processing from any number of locations, time periods, and MODIS products. This automation reduces the risk of human error, and the researcher effort required compared to manual per-location downloads. The package will be particularly useful for ecological studies that include multiple sites, such as meta-analyses, observation networks, and globally distributed experiments. We give examples of the simple, reproducible workflow that MODISTools provides and of the checks that are carried out in the process. The end product is in a format that is amenable to statistical modeling. We analyzed the relationship between species richness across multiple higher taxa observed at 526 sites in temperate forests and vegetation indices, measures of aboveground net primary productivity. We downloaded MODIS derived vegetation index time series for each location where the species richness had been sampled, and summarized the data into three measures: maximum time-series value, temporal mean, and temporal variability. On average, species richness covaried positively with our vegetation index measures. Different higher taxa show different positive relationships with vegetation indices. Models had high R2 values, suggesting higher taxon identity and a gradient of vegetation index together explain most of the variation in species richness in our data. MODISTools can be used on Windows, Mac, and Linux platforms, and is available from CRAN and GitHub (https://github.com/seantuck12/MODISTools)

    Abundant kif21b is associated with accelerated progression in neurodegenerative diseases

    Get PDF
    Kinesin family member 21b (kif21b) is one of the few multiple sclerosis (MS) risk genes with a presumed central nervous system function. Kif21b belongs to the kinesin family, proteins involved in intracellular transport of proteins and organelles. We hypothesised that kif21b is involved in the neurodegenerative component of MS and Alzheimer¿s (AD) disease. Post-mortem kinesin expression was assessed in 50 MS, 58 age and gender matched non-demented controls (NDC) and 50 AD. Kif21b expression was five-fold increased in AD compared to MS and NDC aged below 62 years (p¿=¿8*10¿5), three-fold between 62¿72 years (p¿=¿0.005) and not different above 72 years. No significant differences were observed between MS and NDC. In AD, kif21b expression was two-fold increased in Braak stage 6 (scoring for density of neurofibrillary tangles) compared with stage 5 (p¿=¿0.003). In MS patients, kif21b correlated with the extent of grey matter demyelination (Spearman¿s rho¿=¿0.31, p¿=¿0.03). Abundant kif21b, defined as expression above the median, was associated with a two-fold accelerated development of the Kurtzke Expanded Disability Status Scale (EDSS) 6.0 (median time in low kif21b group 16 years vs. high kif21b 7.5 years, log-rank test p¿=¿0.04) in MS. Given the genetic association of kif21b with MS, the results were stratified according to rs12122721[A] single nucleotide polymorphism (SNP). No association was found between kif21b expression or the time to EDSS 6 in kif21b risk SNP carriers compared to non-risk carriers. Kif21b was expressed in astrocytes in addition to neurons. Upon astrocyte activation, kif21b increased nine-fold. Abundant kif21b expression is associated with severe MS and AD pathology and with accelerated neurodegeneration independent of the kif21b risk SNP

    Pediatric autoimmune encephalitis: Recognition and diagnosis

    Get PDF
    OBJECTIVE: The aims of this study were (1) to describe the incidence of autoimmune encephalitis (AIE) and acute dissemi

    T-cell activation marker sCD27 is associated with clinically definite multiple sclerosis in childhood-acquired demyelinating syndromes

    Get PDF
    Background: Cerebrospinal fluid (CSF) levels of T-cell activation marker soluble CD27 (sCD27) are associated with subsequent disease activity after a first attack of suspected MS in adults. The predictive value for disease course in children with acquired demyelinating syndromes (ADS) is unknown. Objectives: To assess the predictive value of sCD27 levels for clinically definite multiple sclerosis (CDMS) diagnosis in childhood ADS. Methods: Children <18 years with a first demyelinating event were prospectively included and followed. Soluble CD27 was determined in CSF using an enzyme-linked immunosorbent assay (ELISA). Cox regression analyses were used to calculate hazard ratios (HRs) for CDMS. Results: A total of 94 ADS children were included (ADS with encephalopathy (ADS+) n = 33 and ADS without encephalopathy (ADS–) n = 61). Of the 61 ADS– children, 21 (48%) were diagnosed with CDMS during follow-up. At baseline, sCD27 levels were higher in patients with a future CDMS diagnosis (n = 29) than in monophasic ADS+ (n = 30), monophasic ADS– (n = 28) and relapsing non-MS patients (n = 7; p < 0.001). In ADS– patients, sCD27 was associated with CDMS (HR = 1.8 per 100 U/mL increase in sCD27 levels, p = 0.031), after adjustments for age, oligoclonal bands and the presence of dissemination in space on baseline magnetic resonance imaging (MRI). Conclusion: CSF sCD27 levels at first attack of demyelination were associated with CDMS diagnosis in children. This makes sCD27 a potential clinically relevant quantitative marker when performing routine CSF diagnostics

    HLA association in MOG-IgG- and AQP4-IgG-related disorders of the CNS in the Dutch population

    Get PDF
    OBJECTIVE: To investigate the possible human leukocyte antigen (HLA) association of both myelin oligodendrocyte glycoprotein (MOG-IgG)-associated diseases (MOGAD) and aquaporin-4 antibody (AQP4-IgG)-positive neuromyelitis optica spectrum disorders (NMOSDs) in the Dutch population with European ancestry to clarify similarities or differences in the immunogenetic background of both diseases. METHODS: Blood samples from patients in the Dutch national MS/NMOSD expert clinic were tested for MOG-IgG and AQP4-IgG using a cell-based assay. HLA Class I and II genotyping was performed in 43 MOG-IgG-seropositive and 42 AQP4-IgG-seropositive Dutch patients with European ancestry and compared with those of 5,604 Dutch healthy blood donors. RESULTS: No significant HLA association was found in MOG-IgG-seropositive patients. The AQP4-IgG-seropositive patients had a significant higher frequency of HLA-A*01 (61.9% vs 33.7%, OR 3.16, 95% CI, 1.707-5.863, p after correction [pc] = 0.0045), HLA-B*08 (61.9% vs 25.6%, OR 4.66, 95% CI, 2.513-8.643, pc < 0.0001), and HLA-DRB1*03 (51.2% vs 27.6%, OR 2.75, 95% CI, 1.495-5.042, pc = 0.0199) compared with controls. CONCLUSIONS: The present study demonstrates differences in the immunogenetic background of MOGAD and AQP4-IgG-positive NMOSD. The strong positive association with HLA-A*01, -B*08, and -DRB1*03 is suggestive of a role of this haplotype in the etiology of AQP4-IgG-positive NMOSD in patients with European ancestry, whereas in MOGAD no evidence was found for any HLA association in these disorders

    Konsensusprotokoll zur Standardisierung von Entnahme und Biobanking des Liquor cerebrospinalis

    Get PDF
    Die Erforschung von Biomarkern in Körperflüssigkeiten bei neurodegenerativen und neuroinflammatorischen Erkrankungen blickt auf eine langjährige Geschichte zurück. Dennoch werden nur wenige Liquor cerebrospinalis (Liquor)-Biomarker in der klinischen Praxis verwendet. Einer der problematischen Faktoren in der Liquorbiomarker-Forschung ist die eingeschränkte Aussagekraft von Studien aufgrund einer nicht ausreichend großer Anzahl von Proben, die in Studien von einzelnen Zentren akquiriert werden können. Deshalb ist die Kooperation zwischen mehreren Zentren erforderlich, um große Biobanken von definierten Proben zu etablieren. Standardisierte Protokolle für Biobanking sind unumgänglich, um die durch die größere Anzahl von Liquorproben gewonnene statistische Aussagekraft sicherzustellen und nicht durch mangelhafte Präanalytik einzuschränken. Hier wird ein Konsensusbericht über Leitlinien zu Liquorentnahme und Biobanking durch das BioMS-eu Netzwerk für Liquorbiomarker-Forschung in Multipler Sklerose präsentiert. Schwerpunkte des Berichts sind Liquorentnahme, präanalytische Faktoren und klinische sowie sonstige Informationen. Biobanking-Protokolle sind für Liquor-Biobanken im Rahmen der Erforschung jeder neurologischen Krankheit anwendba

    Consensus Guidelines for CSF and Blood Biobanking for CNS Biomarker Studies

    Get PDF
    There is a long history of research into body fluid biomarkers in neurodegenerative and neuroinflammatory diseases. However, only a few biomarkers in cerebrospinal fluid (CSF) are being used in clinical practice. Anti-aquaporin-4 antibodies in serum are currently useful for the diagnosis of neuromyelitis optica (NMO), but we could expect novel CSF biomarkers that help define prognosis and response to treatment for this disease. One of the most critical factors in biomarker research is the inadequate powering of studies performed by single centers. Collaboration between investigators is needed to establish large biobanks of well-defined samples. A key issue in collaboration is to establish standardized protocols for biobanking to ensure that the statistical power gained by increasing the numbers of CSF samples is not compromised by pre-analytical factors. Here, consensus guidelines for CSF collection and biobanking are presented, based on the guidelines that have been published by the BioMS-eu network for CSF biomarker research. We focussed on CSF collection procedures, pre-analytical factors and high quality clinical and paraclinical information. Importantly, the biobanking protocols are applicable for CSF biobanks for research targeting any neurological disease

    Proteomics Comparison of Cerebrospinal Fluid of Relapsing Remitting and Primary Progressive Multiple Sclerosis

    Get PDF
    Background: Based on clinical representation of disease symptoms multiple sclerosis (MScl) patients can be divided into two major subtypes; relapsing remitting (RR) MScl (85-90%) and primary progressive (PP) MScl (10-15%). Proteomics analysis of cerebrospinal fluid (CSF) has detected a number of proteins that were elevated in MScl patients. Here we specifically aimed to differentiate between the PP and RR subtypes of MScl by comparing CSF proteins. Methodology/Principal Findings: CSF samples (n = 31) were handled according to the same protocol for quantitative mass spectrometry measurements we reported previously. In the comparison of PP MScl versus RR MScl we observed a number of differentially abundant proteins, such as protein jagged-1 and vitamin D-binding protein. Protein jagged-1 was over three times less abundant in PP MScl compared to RR MScl. Vitamin D-binding protein was only detected in the RR MScl samples. These two proteins were validated by independent techniques (western blot and ELISA) as differentially abundant in the comparison between both MScl types. Conclusions/Significance: The main finding of this comparative study is the observation that the proteome profiles of CSF in PP and RR MScl patients overlap to a large extent. Still, a number of differences could be observed. Protein jagged-1 is a ligand for multiple Notch receptors and involved in the mediation of Notch signaling. It is suggested in literature that the Notch pathway is involved in the remyelination of MScl lesions. Aberration of normal homeostasis of Vitamin D, of which approximately 90% is bound to vitamin D-binding protein, has been widely implicated in MScl for some years now. Vitamin D directly and indirectly regulates the differentiation, activation of CD4+ T-lymphocytes and can prevent the development of autoimmune processes, and so it may be involved in neuroprotective elements in MScl

    Brain antigens in functionally distinct antigen-presenting cell populations in cervical lymph nodes in MS and EAE

    Get PDF
    Drainage of central nervous system (CNS) antigens to the brain-draining cervical lymph nodes (CLN) is likely crucial in the initiation and control of autoimmune responses during multiple sclerosis (MS). We demonstrate neuronal antigens within CLN of MS patients. In monkeys and mice with experimental autoimmune encephalomyelitis (EAE) and in mouse models with non-inflammatory CNS damage, the type and extent of CNS damage was associated with the frequencies of CNS antigens within the cervical lymph nodes. In addition, CNS antigens drained to the spinal-cord-draining lumbar lymph nodes. In human MS CLN, neuronal antigens were present in pro-inflammatory antigen-presenting cells (APC), whereas the majority of myelin-containing cells were anti-inflammatory. This may reflect a different origin of the cells or different drainage mechanisms. Indeed, neuronal antigen-containing cells in human CLN did not express the lymph node homing receptor CCR7, whereas myelin antigen-containing cells in situ and in vitro did. Nevertheless, CLN from EAE-affected CCR7-deficient mice contained equal amounts of myelin and neuronal antigens as wild-type mice. We conclude that the type and frequencies of CNS antigens within the CLN are determined by the type and extent of CNS damage. Furthermore, the presence of myelin and neuronal antigens in functionally distinct APC populations within MS CLN suggests that differential immune responses can be evoked
    corecore