401 research outputs found

    Rotation of Low-mass Stars in Taurus with K2

    Get PDF
    We present an analysis of K2 light curves (LCs) from Campaigns 4 and 13 for members of the young (~3 Myr) Taurus association, in addition to an older (~30 Myr) population of stars that is largely in the foreground of the Taurus molecular clouds. Out of 156 of the highest-confidence Taurus members, we find that 81% are periodic. Our sample of young foreground stars is biased and incomplete, but nearly all stars (37/38) are periodic. The overall distribution of rotation rates as a function of color (a proxy for mass) is similar to that found in other clusters: the slowest rotators are among the early M spectral types, with faster rotation toward both earlier FGK and later M types. The relationship between period and color/mass exhibited by older clusters such as the Pleiades is already in place by Taurus age. The foreground population has very few stars but is consistent with the USco and Pleiades period distributions. As found in other young clusters, stars with disks rotate on average slower, and few with disks are found rotating faster than ~2 days. The overall amplitude of the LCs decreases with age, and higher-mass stars have generally lower amplitudes than lower-mass stars. Stars with disks have on average larger amplitudes than stars without disks, though the physical mechanisms driving the variability and the resulting LC morphologies are also different between these two classes

    Standard Model Physics and the Digital Quantum Revolution: Thoughts about the Interface

    Get PDF
    Advances in isolating, controlling and entangling quantum systems are transforming what was once a curious feature of quantum mechanics into a vehicle for disruptive scientific and technological progress. Pursuing the vision articulated by Feynman, a concerted effort across many areas of research and development is introducing prototypical digital quantum devices into the computing ecosystem available to domain scientists. Through interactions with these early quantum devices, the abstract vision of exploring classically-intractable quantum systems is evolving toward becoming a tangible reality. Beyond catalyzing these technological advances, entanglement is enabling parallel progress as a diagnostic for quantum correlations and as an organizational tool, both guiding improved understanding of quantum many-body systems and quantum field theories defining and emerging from the Standard Model. From the perspective of three domain science theorists, this article compiles thoughts about the interface on entanglement, complexity, and quantum simulation in an effort to contextualize recent NISQ-era progress with the scientific objectives of nuclear and high-energy physics.Comment: 63 pages, 5 figure

    Enhancing Qubit Readout with Autoencoders

    Full text link
    In addition to the need for stable and precisely controllable qubits, quantum computers take advantage of good readout schemes. Superconducting qubit states can be inferred from the readout signal transmitted through a dispersively coupled resonator. This work proposes a novel readout classification method for superconducting qubits based on a neural network pre-trained with an autoencoder approach. A neural network is pre-trained with qubit readout signals as autoencoders in order to extract relevant features from the data set. Afterwards, the pre-trained network inner layer values are used to perform a classification of the inputs in a supervised manner. We demonstrate that this method can enhance classification performance, particularly for short and long time measurements where more traditional methods present lower performance.Comment: 16 pages, 23 figure

    Potential role of the intestinal microbiota of the mother in neonatal immune education

    Get PDF
    Mucosal dendritic cells are at the heart of decision-making processes that dictate immune reactivity to intestinal microbes. They ensure tolerance to commensal bacteria and a vigorous immune response to pathogens. It has recently been demonstrated that the former involves a limited migration of bacterially loaded dendritic cells from the Peyer's patches to the mesenteric lymph nodes. During lactation, cells from gut-associated lymphoid tissue travel to the breast via the lymphatics and peripheral blood. Here, we show that human peripheral blood mononuclear cells and breast milk cells contain bacteria and their genetic material during lactation. Furthermore, we show an increased bacterial translocation from the mouse gut during pregnancy and lactation and the presence of bacterially loaded dendritic cells in lactating breast tissue. Our observations show bacterial translocation as a unique physiological event, which is increased during pregnancy and lactation. They suggest endogenous transport of intestinally derived bacterial components within dendritic cells destined for the lactating mammary gland. They also suggest neonatal immune imprinting by milk cells containing commensal-associated molecular pattern

    Potential role of the intestinal microbiota of the mother in neonatal immune education

    Get PDF
    Mucosal dendritic cells are at the heart of decision-making processes that dictate immune reactivity to intestinal microbes. They ensure tolerance to commensal bacteria and a vigorous immune response to pathogens. It has recently been demonstrated that the former involves a limited migration of bacterially loaded dendritic cells from the Peyer's patches to the mesenteric lymph nodes. During lactation, cells from gut-associated lymphoid tissue travel to the breast via the lymphatics and peripheral blood. Here, we show that human peripheral blood mononuclear cells and breast milk cells contain bacteria and their genetic material during lactation. Furthermore, we show an increased bacterial translocation from the mouse gut during pregnancy and lactation and the presence of bacterially loaded dendritic cells in lactating breast tissue. Our observations show bacterial translocation as a unique physiological event, which is increased during pregnancy and lactation. They suggest endogenous transport of intestinally derived bacterial components within dendritic cells destined for the lactating mammary gland. They also suggest neonatal immune imprinting by milk cells containing commensal-associated molecular patterns.Facultad de Ciencias Exacta

    Potential role of the intestinal microbiota of the mother in neonatal immune education

    Get PDF
    Mucosal dendritic cells are at the heart of decision-making processes that dictate immune reactivity to intestinal microbes. They ensure tolerance to commensal bacteria and a vigorous immune response to pathogens. It has recently been demonstrated that the former involves a limited migration of bacterially loaded dendritic cells from the Peyer's patches to the mesenteric lymph nodes. During lactation, cells from gut-associated lymphoid tissue travel to the breast via the lymphatics and peripheral blood. Here, we show that human peripheral blood mononuclear cells and breast milk cells contain bacteria and their genetic material during lactation. Furthermore, we show an increased bacterial translocation from the mouse gut during pregnancy and lactation and the presence of bacterially loaded dendritic cells in lactating breast tissue. Our observations show bacterial translocation as a unique physiological event, which is increased during pregnancy and lactation. They suggest endogenous transport of intestinally derived bacterial components within dendritic cells destined for the lactating mammary gland. They also suggest neonatal immune imprinting by milk cells containing commensal-associated molecular patterns.Facultad de Ciencias Exacta

    Tolerance and Safety Evaluation in a Large Cohort of Healthy Infants Fed an Innovative Prebiotic Formula: A Randomized Controlled Trial

    Get PDF
    Background: the addition of oligosaccharides to infant formula has been shown to mimic some of the beneficial effects of human milk. The aim of the study was to assess the tolerance and safety of a formula containing an innovative mixture of oligosaccharides in early infancy. Methodology/Principal Findings: this study was performed as a multi-center, randomized, double-blind, placebo-controlled trial including healthy term infants. Infants were recruited before the age of 8 weeks, either having started with formula feeding or being fully breast-fed (breastfeeding group). Formula-fed infants were randomized to feeding with a regular formula containing a mixture of neutral oligosaccharides and pectin-derived acidic oligosaccharides (prebiotic formula group) or regular formula without oligosaccharides (control formula group). Growth, tolerance and adverse events were assessed at 8, 16, 24 and 52 weeks of age. The prebiotic and control groups showed similar mean weight, length and head circumference, skin fold thicknesses, arm circumference gains and stool frequency at each study point. As far as the anthropometric parameters are concerned, the prebiotic group and the control group did not attain the values shown by the breastfeeding group at any study point. The skin fold thicknesses assessed in the breastfeeding group at 8 weeks were strikingly larger than those in formula fed infants, whereas at 52 weeks were strikingly smaller. The stool consistency in the prebiotic group was softer than in the control group at 8, 16 and 24 weeks (p <0.001) and closer to that of the breastfeeding group. There was no difference in the incidence of adverse events between the two formula groups. Conclusions: our findings demonstrate the tolerability and the long term safety of a formula containing an innovative mixture of oligosaccharides in a large cohort of healthy infants
    • …
    corecore