125 research outputs found

    Local Kondo temperatures in atomic chains

    Full text link
    We study the effect of disorder in strongly interacting small atomic chains. Using the Kotliar- Ruckenstein slave-boson approach we diagonalize the Hamiltonian via scattering matrix theory. We numerically solve the Kondo transmission and the slave-boson parameters that allow us to calculate the Kondo temperature. We demonstrate that in the weak disorder regime, disorder in the energy levels of the dopants induces a non-screened disorder in the Kondo couplings of the atoms. We show that disorder increases the Kondo temperature of a perfect chain. We find that this disorder in the couplings comes from a local distribution of Kondo temperatures along the chain. We propose two experimental setups where the impact of local Kondo temperatures can be observed

    Insight into the role of water on the methylation of hexamethylbenzene in H‐SAPO‐34 from first principle molecular dynamics simulations

    Get PDF
    The methylation of hexamethylbenzene with methanol is one of the key reactions in the methanol-to-olefins hydrocarbon pool reaction cycle taking place over the industrially relevant H-SAPO-34 zeolite. This methylation reaction can occur either via a concerted or via a stepwise mechanism, the latter being the preferred pathway at higher temperatures. Herein, we systematically investigate how a complex reaction environment with additional water molecules and higher concentrations of Bronsted acid sites in the zeolite impacts the reaction mechanism. To this end, first principle molecular dynamics simulations are performed using enhanced sampling methods to characterize the reactants and products in the catalyst pores and to construct the free energy profiles. The most prominent effect of the dynamic sampling of the reaction path is the stabilization of the product region where water is formed, which can either move freely in the pores of the zeolite or be stabilized through hydrogen bonding with the other protic molecules. These protic molecules also stabilize the deprotonated Bronsted acid site, created due to the formation of the heptamethylbenzenium cation, via a Grotthuss-type mechanism. Our results provide fundamental insight in the experimental parameters that impact the methylation of hexamethylbenzene in H-SAPO-34, especially highlighting and rationalizing the crucial role of water in one of the main reactions of the aromatics-based reaction cycle

    Exploring the flexibility of MIL-47(V)-type materials using force field molecular dynamics simulations

    Get PDF
    The flexibility of three MIL-47(V)-type materials (MIL-47, COMOC-2, and COMOC-3) has been explored by constructing the pressure versus volume and free energy versus volume profiles at various temperatures ranging from 100 to 400 K This is done with first-principles-based force fields using the recently proposed QuickFF parametrization protocol. Specific terms were added for the materials at hand to describe the asymmetry of the one-dimensional vanadium oxide chain and to account for the flexibility of the organic linkers. The force fields are used in a series of molecular dynamics simulations at fixed volumes but varying unit cell shapes. The three materials show a distinct pressure-volume behavior, which underlines the ability to tune the mechanical properties by varying the linkers toward different applications such as nanosprings, dampers, and shock absorbers

    Unraveling the thermodynamic criteria for size-dependent spontaneous phase separation in soft porous crystals

    Get PDF
    Soft porous crystals (SPCs) harbor a great potential as functional nanoporous materials owing to their stimuli-induced and tuneable morphing between different crystalline phases. These large-amplitude phase transitions are often assumed to occur cooperatively throughout the whole material, which thereby retains its perfect crystalline order. Here, we disprove this paradigm through mesoscale first-principles based molecular dynamics simulations, demonstrating that morphological transitions do induce spatial disorder under the form of interfacial defects and give rise to yet unidentified phase coexistence within a given sample. We hypothesize that this phase coexistence can be stabilized by carefully tuning the experimental control variables through, e.g., temperature or pressure quenching. The observed spatial disorder helps to rationalize yet elusive phenomena in SPCs, such as the impact of crystal downsizing on their flexible nature, thereby identifying the crystal size as a crucial design parameter for stimuli-responsive devices based on SPC nanoparticles and thin films

    Thermodynamic insight into stimuli-responsive behaviour of soft porous crystals

    Get PDF
    Knowledge of the thermodynamic potential in terms of the independent variables allows to characterize the macroscopic state of the system. However, in practice, it is difficult to access this potential experimentally due to irreversible transitions that occur between equilibrium states. A showcase example of sudden transitions between (meta) stable equilibrium states is observed for soft porous crystals possessing a network with long-range structural order, which can transform between various states upon external stimuli such as pressure, temperature and guest adsorption. Such phase transformations are typically characterized by large volume changes and may be followed experimentally by monitoring the volume change in terms of certain external triggers. Herein, we present a generalized thermodynamic approach to construct the underlying Helmholtz free energy as a function of the state variables that governs the observed behaviour based on microscopic simulations. This concept allows a unique identification of the conditions under which a material becomes flexible

    Influence of a confined methanol solvent on the reactivity of active sites in UiO-66

    Get PDF
    UiO-66, composed of Zr-oxide bricks and terephthalate linkers, is currently one of the most studied metal-organic frameworks due to its exceptional stability. Defects can be introduced in the structure, creating undercoordinated Zr atoms which are Lewis acid sites. Here, additional BrOnsted sites can be generated by coordinated protic species from the solvent. In this Article, a multilevel modeling approach was applied to unravel the effect of a confined methanol solvent on the active sites in UiO-66. First, active sites were explored with static periodic density functional theory calculations to investigate adsorption of water and methanol. Solvent was then introduced in the pores with grand canonical Monte Carlo simulations, followed by a series of molecular dynamics simulations at operating conditions. A hydrogen-bonded network of methanol molecules is formed, allowing the protons to shuttle between solvent methanol, adsorbed water, and the inorganic brick. Upon deprotonation of an active site, the methanol solvent aids the transfer of protons and stabilizes charged configurations via hydrogen bonding, which could be crucial in stabilizing reactive intermediates. The multilevel modeling approach adopted here sheds light on the important role of a confined solvent on the active sites in the UiO-66 material, introducing dynamic acidity in the system at finite temperatures by which protons may be easily shuttled from various positions at the active sites

    Gate induced g-factor control and dimensional transition for donors in multi-valley semiconductors

    Get PDF
    The dependence of the g-factors of semiconductor donors on applied electric and magnetic fields is of immense importance in spin based quantum computation and in semiconductor spintronics. The donor g-factor Stark shift is sensitive to the orientation of the electric and magnetic fields and strongly influenced by the band-structure and spin-orbit interactions of the host. Using a multimillion atom tight-binding framework the spin-orbit Stark parameters are computed for donors in multi-valley semiconductors, silicon and germanium. Comparison with limited experimental data shows good agreement for a donor in silicon. Results for gate induced transition from 3D to 2D wave function confinement show that the corresponding g-factor shift in Si is experimentally observable.Comment: 4 pages, 4 figure
    corecore