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The dependence of the g-factors of semiconductor donors on applied electric and magnetic fields
is of immense importance in spin based quantum computation and in semiconductor spintronics.
The donor g-factor Stark shift is sensitive to the orientation of the electric and magnetic fields and
strongly influenced by the band-structure and spin-orbit interactions of the host. Using a multi-
million atom tight-binding framework the spin-orbit Stark parameters are computed for donors in
multi-valley semiconductors, silicon and germanium. Comparison with limited experimental data
shows good agreement for a donor in silicon. Results for gate induced transition from 3D to 2D wave
function confinement show that the corresponding g-factor shift in Si is experimentally observable.

PACS numbers: 71.55.Cn, 03.67.Lx, 85.35.Gv, 71.70.Ej

Understanding the behavior of single donor electron
bound states under mesoscopic electric and magnetic
fields is a fundamental issue critical to current minia-
turization of semiconductor devices [1] and to the devel-
opment of new quantum technologies [2, 3, 4]. It is only
very recently that convergence between experiment and
theory has occurred for the electric gate control of the
orbital states [1] and electron-nuclear hyperfine interac-
tion [5, 6] for a donor in silicon. However, the Stark
shift of the donor spin-orbit interaction, which is central
to understanding the precise spin properties in combined
electric and magnetic fields, is just beginning to be under-
stood [7]. We report the first atomistic treatment of the
donor spin-orbit interaction in multi-valley semiconduc-
tors in gated environments, and show non-trivial agree-
ment with experiment where available. We calculate the
donor g-factor shift for the transition from 3D Coulomb
to 2D interface confinement and show that the effect is
experimentally observable.

Wave function engineering of donor spins is a basic in-
gredient of several quantum computing schemes [2, 3, 4],
and may also help realize novel devices based on spin
degrees of freedom. In one method, an applied E-field
deforms the donor wave function and modifies its orbital
angular momentum, which in turn can modify its spin
properties through the spin-orbit interaction. This spin-
orbit Stark effect is manifested by an E-field dependence
of the effective g-factor, and can be probed by ESR ex-
periments [5]. However, as we are dealing with donor lev-
els in the solid-state, generally with complicated multi-
valley orbital-spin effects, the physical origins of this phe-
nomenon is at present not well understood. In semicon-
ductors with significant spin-orbit interaction, this tech-
nique can even provide a way to rotate spins by electri-
cal modulation of the g-tensor, and was demonstrated in
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FIG. 1: Wave function and g-factor engineering of donor and
interface confined electrons by EM fields in Si and Ge semi-
conductors (CB equivalent energy surfaces shown left).

GaAs quantum dots [8] and in GaAs/AlxGa1−xAs het-
erostructures [9, 10]. While the spin-orbit interaction in
Si is relatively small, in a quantum computer application
such effects can lead to qubit errors at the threshold level
and need to be characterized and understood.

In this letter we report the first investigation of the
Stark shift of the donor g-factor in two multi-valley semi-
conductors with varying degrees of spin-orbit interaction.
We quantify the way in which the E-field removes the
isotropy of the donor g-tensor components, resulting in
an anisotropic Zeeman interaction. We also compare our
g-factor Stark shift for P donors in Si against the only
available measured value [5], and report corresponding
parameters for Ge host under different orientations of E
and B fields, as a guide for future experiments. Finally,
we investigate g-factors of donors close to an oxide semi-
conductor interface, and study the g-factor variation as
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the electron undergoes a symmetry transition from 3D
Coulomb to 2D interfacial confinement [1]. This transi-
tion is central to proposals for donor-gate-confined inter-
facial transport and qubits in Si [11, 12].

Engineering the magnetic field response in semicon-
ductors typically involves compound structures such as
AlxGa1−xAs or SixGe1−x with a spatially varying mate-
rial composition. Since the two materials, Al and Ga in
AlxGa1−xAs for example, have different g-factors, the ef-
fective g-factor of an electronic wave function can be con-
trolled by pulling the wavefunction from an Al-rich part
of the device to the Ga-rich part by means of an E-field
[3]. The direct dependence of the g-factor on the field,
however, has been largely ignored in literature except for
Refs [10], where the g-tensor modulation resonance was
used in AlxGa1−xAs hetero-structures to control spin co-
herence electrically. In Ref [14], an all electrical control
of the spin of a Mn hole in GaAs was investigated. A
large anisotropic Zeeman splitting has been reported for
acceptor levels in SiGeSi quantum wells [15] and also for
single quantum states of nanoparticles [16]. Past ESR ex-
periments [17, 18] have investigated the effect of uniaxial
strain on donor g-factors in Si and Ge, while a recent
work demonstrated the gate control of spin-orbit inter-
action in a GaAs/AlGaAs quantum well [19].

In this work, we employed an atomistic tight-binding
(TB) theory with a 20 orbital sp3d5s∗ basis per atom
including nearest neighbor and spin-orbit (SO) interac-
tions. The total Hamiltonian of the host and the donor
under an applied E-field can be expressed as,

H = H0 −
~

4m2
0c

2
~σ · ~p × ~∇V0 + Udonor(r) + e ~E · ~r. (1)

The first term represents the host semiconductor, the
second term the SO interaction of the host due to the
crystal potential V0, the third and the fourth represent
the donor potential and the applied E-field. The semi-
empirical TB parameters for Si and Ge [20, 21] used here
have been well established in literature. The SO inter-
action of the host was represented as a matrix element
between the p orbitals of the same atom after Chadi [22],
and has been shown to cause energy splitting between
the split-off hole (SH) band and the degenerate manifold
of the light (LH) and heavy (HH) hole bands. This rep-
resentation includes both the Rashba and Dresselhaus
terms inherently, as opposed to the k·p method where
the two are separately expressed. The donors are repre-
sented by a Coulomb potential screened by the dielectric
constant of the host. The potential at the donor site U0

was adjusted to obtain the ground state (GS) binding en-
ergy [23] taking into account the valley-orbit interaction
in multi-valley semiconductors [24]. The total Hamilto-
nian was solved by a parallel Block Lanczos algorithm
to obtain the relevant donor states. A typical simula-
tion involved about 3 million atoms, and requires about
5 hours on 40 processors. The Zeeman Hamiltonian was

then evaluated perturbatively, using the matrix elements
HZij = 〈Ψi(~r, ~E)|(~L + 2~S) · ~B|Ψj(~r, ~E)〉, where i, j rep-
resent ↑ and ↓ spins of a donor state. The small B-field
(1T) used throughout this work justified the inclusion of
linear B-field dependencies only in the Zeeman Hamilto-
nian. The g-factor was then evaluated using the lowest
spin states (ǫ), g( ~E, ~B) = (ǫ↑ − ǫ↓)/µB| ~B|.

This TB model has been previously used to investigate
the Stark shift of the hyperfine constant for a P donor
in Si [6] in good agreement with ESR measurements [5]
and momentum space methods [13]. It has also been
successfully applied to interpret orbital Stark shift mea-
surements on single As donors in Si FinFETS [1].

The g-factor for a donor ground state in a multi-valley
semiconductor is influenced by two main factors. Within
a single valley, the g-factor of electrons moving paral-
lel to the valley axis (g||) is different from the g-factor
for perpendicular motion (g⊢), assuming the semiconduc-
tor has non-spherical energy surfaces. This anisotropy
may be affected further by external perturbations such as
strain or E-fields, which may cause higher lying conduc-
tion bands (CB) to admix with the lowest CB [18]. Sec-
ondly, the donor ground states in Si and Ge have an equal
admixture of all the valleys due to the valley-orbit inter-
action [24], resulting in an isotropic effective g-factor.
Since an E-field removes the equivalency of the valleys,
the effective g-factor becomes anisotropic depending on
the contribution of the different valleys to the quantum
state. The first effect is termed as the single-valley ef-
fect while the second the valley repopulation effect [17].
In a tight-binding description, it is not necessary to sin-
gle out different valley contributions since the full band
structure is considered in the formalism. Hence both ef-
fects are captured in the resulting g-factor.

TABLE I: Comparison of the quadratic g-factor Stark shift
coefficient for donors in Si and Ge under different orientation
of electric and magnetic fields.

Donor Valence band Binding E-field B-field η2 [10−3µm2/V2]

(valleys) splitting energy Theory Expt [5]

[direction] [eV] [meV]

Si:P 0.044 -45.6 [010] B|| -0.012 -0.01

(6) [100] B⊥ 0.014 (Si:Sb)

Ge:P 0.29 -12.8 [010] B|| -4.8 -

(4) [111] B⊥ -4.8

[111] B|| 143.8

B⊥ -80.1

Table I compares the spin-orbit properties of donors in
Si and Ge. The SO interaction is stronger in Ge than in
Si, as shown by the spin-orbit interaction whose strength
is shown by the energy splitting of the split-off valence
band from the degenerate light and heavy hole bands at
the gamma point of its band structure. Si and Ge are
multi-valley semiconductors with valleys located along
[100] and [111] crystal axes respectively.

Fig 2 shows that the g-factor of donors primarily varies
quadratically with the E-field.The g-factor shifts are af-
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FIG. 2: Relative change in the the donor g-factor in Si and
Ge as a function of E-field strength (in applied direction) and
for parallel and perpendicular magnetic field orientation. a)
Si:P under [010] E-filed , b) Ge:P under [010] E-field, c) Ge:P
under [111] E-field, and d) Ge:P under [110] E-field. The g-
factor shift is sensitive to the relative orientation of the E and
B fields with respect to the valley axis.

fected by the relative angles between the E-field, the val-
ley axis, and the B-field. Fig 2a shows the g-factor of
a P donor in Si subjected to [010] E-fields, while 2 b,
c, and d are for a P donor in Ge under various orienta-
tions of the E-field. In Si the [010] E-field (2a) removes
the equivalency of the six valleys, introducing the valley-
repopulation effect in the donor wavefunction. This re-
sults in two different parabolas for the g-factor shifts, one
for B parallel to E and the other for perpendicular ori-
entation. The [010] directed E-field cannot remove the
equivalency of the [111] valleys in Ge, and both paral-
lel and perpendicular B-fields produce the same g-factor
shifts (2b). However, when the field is directed along
the [111] valley axis as in 2c, we obtain the split g-factor
parabolas (2b) similar to Fig 2a. In the absence of an
E-field, the Zeeman effect of the donor ground state is
isotropic as shown by the convergence of the two parabo-
las at E = 0 in both Figs 2a and 2c.

The results of Fig 2 are fitted to a quadratic equation
g(E)/g(0) − 1 = η2E

2, where η2 is the quadratic Stark
coefficient. Values of η2 are shown in Table I for a few
different E and B field orientations. For donors close to
interfaces, there can be some linear Stark effect as well,
which we discuss briefly in Fig 4. The quadratic coeffi-
cient of Si:P is of the order of 10−5 µm2/V2, and com-
pares well in magnitude with the only available experi-
mental data on Si:Sb. Order of magnitude comparison
of η2 for Si and Ge shows that the spin-orbit Stark ef-
fect is stronger in Ge than in Si. The Zeeman anisotropy
is also stronger for donors in Ge, where the quadratic
coefficients can differ by an order of magnitude between
parallel and perpendicular B-fields (Table 1).The direc-
tion of the E-field relative to the valley-axes also affects

the strength of the Zeeman interaction. This is shown
by comparing the B|| results of Ge:P for [010] and [111]
directed E-fields. The quadratic Stark coefficients in this
case differ by two orders of magnitude. Our results show
very good agreement in magnitude of η2 for Si:P with
the measured value reported in Ref [5], however, there is
a discrepancy regarding the relative sign of the g-factor
shift in the quadratic regime which we are currently un-
able to account for. Within the TB framework calcula-
tions of the g-factor Stark shift for the single valley GaAs
case were also carried out and showed good agreement in
magnitude in comparison with the recent k.p results [7].

A simple multi-valley picture provides some intuitive
explanations of the Stark shifted g-factor based on the
valley repopulation effect. If |ax|2 represents the contri-
bution of the +x valley in Si to the donor GS, and g

′

+x

the diagonal g-tensor corresponding to this valley with
the x component given by g|| while the y and z compo-
nents given by g⊥, then the effective g-tensor of the donor
GS is given by g(E) =

∑
i=±x,±y,±z |ai|2g

′

i. Assuming
ai = a−i and ax = az for a [010] E-field, we obtain the
effective g-tensor components gx, gy and gz as,

gx = gz = 2(|ay|2 + |ax|2)g⊥ + 2|ax|2g|| (2)

gy = 4|ax|2g⊥ + |ay|2g|| (3)

These equations show that the parallel component of
the g-factor has a different response to the electric field
as compared to the perpendicular component, verifying
the split g-factor curves of Fig 2a and 2d. At E = 0,
each ai = 1/

√
6, and eqs (2) and (3) reduce to gx = gy =

gz = 2
3g⊥ + 1

3g|| = g0, showing an isotropic effective g-
factor. At ionizing E-fields, only the valleys parallel to
the field contribute to the state. Setting ay = 1/

√
2 and

ax = az = 0 in (2) and (3), gx = g⊥ and gy = g||, which
helps to probe the single valley g-factors, as shown later
in Fig 4. Similar expressions can be derived for a donor in
Ge taking into account that the Ge valleys are in [111].
For a more quantitative approach, however, one needs
to know also the g-factor variation within a single val-
ley, the precise nature of the wavefunction distortion by
the E-field, and the effect of B-fields. The TB approach
provides a generalized framework to include all these.

In Fig 3, we vary the angle θ between the E and B-
fields from 0 to 90 degrees for a) Si:P under [010] E-field,
and b) Ge:P under [111] E-field. The relative change in
g-factor shows a linear dependence on sin2 θ, consistent
with Ref [18]. The sensitivity of this variation increases
at higher E-fields as shown in Fig 3a and 3b. The flat
E = 0 line indicates that the Zeeman effect is isotropic at
zero field. Assuming an y-directed E-field in Si such that
the effective g-tensor diagonal components are given by
gx(E) = gz(E) 6= gy(E), the linear dependence of g(E)
on sin2 θ is shown by,

g(E) ≈ gy(E)(1 +
gx(E)2 − gy(E)2

2gy(E)2
sin2 θ) (4)
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Eq 4 can be derived by expanding g = (gy(E)
2
cos2 θ +

gx(E)
2
sin2 θ)1/2 up to linear terms in (gx(E)

2
/gy(E)

2 −
1) sin2 θ.

0 10 20 30 40 50
−2.5

−2

−1.5

−1

−0.5

0

0.5
x 10

−3

Electric field [010] (MV/m)

g
|_
−
g
0

 

 

D: 6a0

D: 8a0

D: 10a0

D: 15a0

D: 25a0

b)
B [001]

0 10 20 30 40 50

0

1

2

3

4

5

6

7
x 10

−3

Electric field [010] (MV/m)

g
||
−
g
0

 

 

D: 6a0

D: 8a0

D: 10a0

D: 15a0

D: 25a0

a) B [010]

Ionization

Ionization

FIG. 4: Interface effects on the donor g-factor for Si:P. g-
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The confinement transition from 3D Coulomb to an
interface 2D system has recently been observed (in con-
junction with the theoretical approach used here) [1],
and is related to a new control scheme based on dopants
close to the Si-SiO2 interface [11]. The donor electron
can be adiabatically pulled to the interface by gate volt-
ages [13, 25, 26], and controlled by surface gates. We
computed the g-factor of a system undergoing this con-
finement transition. Fig 4 shows the components of the
g-factor parallel (4a) perpendicular (4b) to the E-field for
various donor depths. As the E-field increases, the two Si
conduction band valleys in the direction of the field are
lowered in energy relative to the four valleys perpendic-
ular to the field axis. The interface state realized at ion-
izing E-fields has contribution from these two uni-axial
valleys, and hence their g|| and g⊥ approach those of the
two valleys. Our simulations indicate g||−g⊥ ≈ 8×10−3,
which compares well in order of magnitude with the mea-
surements of Ref [18]. This g-factor anisotropy has also
been reported in 2DEGS [27]. The transition to the sin-
gle valley g components is abrupt if the donor is far away
from the interface (>10 nm), and gradual if the donors
are closer to the interface [13, 25, 26]. Proximity to inter-
faces is also marked by linear Stark effect since the wave

function becomes asymmetric due to sharp truncation by
the surface. Fig 4 shows at small donor depths, the g||
and g⊥ also exhibit a linear field dependence. In this
regime, the linear Stark coefficient exceeds the quadratic
coefficient. A similar effect was observed for the hyper-
fine Stark effect [6].

In conclusion, we have for the first time applied atom-
istic techniques to understand and predict the E-field re-
sponse of donor g-factors in multi-valley (Si, Ge) semi-
conductors with different degrees of spin-orbit interac-
tion. The E-field induces a Zeeman anisotropy that varies
with the relative angle between the E and the B fields.
The strength of the Stark shift is also dependent on the
direction of the E-field relative to the valley axis. The
computed Stark shift coefficient of Si:P compares well
in magnitude with the only available measured value for
donors in Si. The donor g-factor Stark shift was also
computed for the 3D to 2D confinement transition, sug-
gesting that the effect is accessible to experiments.
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