34,667 research outputs found

    Does environment affect the star formation histories of early-type galaxies?

    Full text link
    Differences in the stellar populations of galaxies can be used to quantify the effect of environment on the star formation history. We target a sample of early-type galaxies from the Sloan Digital Sky Survey in two different environmental regimes: close pairs and a general sample where environment is measured by the mass of their host dark matter halo. We apply a blind source separation technique based on principal component analysis, from which we define two parameters that correlate, respectively, with the average stellar age (eta) and with the presence of recent star formation (zeta) from the spectral energy distribution of the galaxy. We find that environment leaves a second order imprint on the spectra, whereas local properties - such as internal velocity dispersion - obey a much stronger correlation with the stellar age distribution.Comment: 5 pages, 2 figures. Proceedings of JENAM 2010, Symposium 2: "Environment and the formation of galaxies: 30 years later

    Entanglement control in hybrid optomechanical systems

    Get PDF
    We demonstrate the control of entanglement in a hybrid optomechanical system comprising an optical cavity with a mechanical end-mirror and an intracavity Bose-Einstein condensate (BEC). Pulsed laser light (tuned within realistic experimental conditions) is shown to induce an almost sixfold increase of the atom-mirror entanglement and to be responsible for interesting dynamics between such mesoscopic systems. In order to assess the advantages offered by the proposed control technique, we compare the time-dependent dynamics of the system under constant pumping with the evolution due to the modulated laser light.Comment: Published versio

    Characterization of Bose-Hubbard Models with Quantum Non-demolition Measurements

    Get PDF
    We propose a scheme for the detection of quantum phase transitions in the 1D Bose-Hubbard (BH) and 1D Extended Bose-Hubbard (EBH) models, using the non-demolition measurement technique of quantum polarization spectroscopy. We use collective measurements of the effective total angular momentum of a particular spatial mode to characterise the Mott insulator to superfluid phase transition in the BH model, and the transition to a density wave state in the EBH model. We extend the application of collective measurements to the ground states at various deformations of a super-lattice potential.Comment: 8 pages, 9 figures; published version in PRA, Editors' Suggestio

    Body fluid volume and electrolyte derangements in fasting semiannual report no. 1, dec. 1, 1964 - mar. 31, 1965

    Get PDF
    Electrolyte balance studies on rats maintained in metabolism cages - body fluid volume and electrolyte derangements by fasting in col

    Old and New Fields on Super Riemann Surfaces

    Get PDF
    The ``new fields" or ``superconformal functions" on N=1N=1 super Riemann surfaces introduced recently by Rogers and Langer are shown to coincide with the Abelian differentials (plus constants), viewed as a subset of the functions on the associated N=2N=2 super Riemann surface. We confirm that, as originally defined, they do not form a super vector space.Comment: 9 pages, LaTex. Published version: minor changes for clarity, two new reference

    Internal Gravity Waves Modulate the Apparent Misalignment of Exoplanets around Hot Stars

    Full text link
    We propose that the observed misalignment between extra-solar planets and their hot host stars can be explained by angular momentum transport within the host star. Observations have shown that this misalignment is preferentially around hot stars, which have convective cores and extended radiative envelopes. This situation is amenable to substantial angular momentum transport by internal gravity waves (IGW) generated at the convective-radiative interface. Here we present numerical simulations of this process and show that IGW can modulate the surface rotation of the star. With these two- dimensional simulations we show that IGW could explain the retrograde orbits observed in systems such as HAT-P-6 and HAT-P-7, however, extension to high obliquity objects will await future three- dimensional simulations. We note that these results also imply that individual massive stars should show temporal variations in their v sini measurements.Comment: 6 pages, 2 figures, Accepted for publication in ApJ

    A Feynman-Kac Formula for Anticommuting Brownian Motion

    Get PDF
    Motivated by application to quantum physics, anticommuting analogues of Wiener measure and Brownian motion are constructed. The corresponding Ito integrals are defined and the existence and uniqueness of solutions to a class of stochastic differential equations is established. This machinery is used to provide a Feynman-Kac formula for a class of Hamiltonians. Several specific examples are considered.Comment: 21 page
    • 

    corecore