331 research outputs found

    What Makes a City Liveable? Implications for Next-Generation Infrastructure Services

    Get PDF
    Abstract: Infrastructure forms the framework within which modern societies operate both at the physical and social level. It includes (amongst others) digital, green and social infrastructures, emergency services and food networks, water, energy, waste and transport. Infrastructure, by its very nature, locks in behaviours. The Liveable Cities research consortium aims to identify and test radical engineering interventions that will lead to future low carbon, resource secure cities in which societal wellbeing is prioritised, and these will necessarily influence the shape of infrastructure provision. This paper presents a discussion of what comprises a liveable city and how it might be achieved. It presents the City Design Framework, a technique for the analysis of city strategies that establishes a hierarchy of needs relevant to successfully achieving a liveable city. The framework supports changing perceptions of infrastructure since the necessary future changes have the potential to radically alter people’s lifestyle and wellbeing. Citation: Leach, J.M., Lee, S.E., Braithwaite, P.A., Bouch, C.J., Grayson, N. & Rogers, C.D.F. (2014). What Makes a City Liveable? Implications for Next-Generation Infrastructure Services. In: Campbell P. and Perez P. (Eds), Proceedings of the International Symposium of Next Generation Infrastructure, 1-4 October 2013, SMART Infrastructure Facility, University of Wollongong, Australia

    Investigation of conduction band structure, electron scattering mechanisms and phase transitions in indium selenide by means of transport measurements under pressure

    Full text link
    In this work we report on Hall effect, resistivity and thermopower measurements in n-type indium selenide at room temperature under either hydrostatic and quasi-hydrostatic pressure. Up to 40 kbar (= 4 GPa), the decrease of carrier concentration as the pressure increases is explained through the existence of a subsidiary minimum in the conduction band. This minimum shifts towards lower energies under pressure, with a pressure coefficient of about -105 meV/GPa, and its related impurity level traps electrons as it reaches the band gap and approaches the Fermi level. The pressure value at which the electron trapping starts is shown to depend on the electron concentration at ambient pressure and the dimensionality of the electron gas. At low pressures the electron mobility increases under pressure for both 3D and 2D electrons, the increase rate being higher for 2D electrons, which is shown to be coherent with previous scattering mechanisms models. The phase transition from the semiconductor layered phase to the metallic sodium cloride phase is observed as a drop in resistivity around 105 kbar, but above 40 kbar a sharp nonreversible increase of the carrier concentration is observed, which is attributed to the formation of donor defects as precursors of the phase transition.Comment: 18 pages, Latex, 10 postscript figure

    The mineralogy and fabric of 'Brickearths' in Kent, UK and their relationship to engineering behaviour

    Get PDF
    Mineralogical and petrographical investigation of two loessic brickearth profiles from Ospringe and Pegwell Bay in north Kent, UK have differentiated two types of brickearth fabric that can be correlated with different engineering behaviour. Both sequences comprise metastable (collapsing) calcareous brickearth, overlain by non collapsing ‘non-calcareous’ brickearth. This study has demonstrated that the two types of brickearth are discretely different sedimentary units, with different primary sedimentary characteristics and an erosional junction between the two units. A palaeosol is developed on the calcareous brickearth, and is associated with the formation of rhizolithic calcrete indicating an arid or semi-arid environment. No evidence has been found for decalcification being responsible for the fabric of the upper ‘non-calcareous’ brickearth. Optically-stimulated dates lend further support for the calcareous and ‘non-calcareous’ brickearth horizons being of different age or origins. The calcareous brickearth is metastable in that it undergoes rapid collapse settlement when wetted under applied stresses. It is characterised by an open-packed arrangement of clay-coated, silt-sized quartz particles and pelletised aggregate grains (peds) of compacted silt and clay, supported by an interped matrix of loosely packed, silt/fine-grained sand, in which the grains are held in place by a skeletal framework of illuviated clay. The illuviated clay forms bridges and pillars separating and binding the dispersed component silt/sand grains. There is little direct grain-to-grain contact and the resultant fabric has a very high voids ratio. Any applied load is largely supported by these delicate clay bridge and pillar microfabrics. Collapse of this brickearth fabric can be explained by a sequence of processes involving: (1) dispersion and disruption of the grain-bridging clay on saturation, leading to initial rapid collapse of the loose packed inter-ped silt/sand; (2) rearrangement and closer stacking of the compact aggregate silt/clay peds; (3) with increasing stress further consolidation may result from deformation and break up of the peds as they collapse into the inter-ped regions. Smectite is a significant component of the clay assemblage and will swell on wetting, further encouraging disruption and breaking of the clay bonds. In contrast, the ‘non-calcareous’ brickearth already possesses a close-packed and interlocking arrangement of silt/sand grains with only limited scope for further consolidation under load. Minor authigenic calcite and dolomite may also form meniscus cements between silt grains. These have either acted as ‘‘scaffolds’’ on which illuviated clay has subsequently been deposited or have encrusted earlier formed grain-bridging clay. In either case, the carbonate cements may help to reinforce the clay bridge fabrics. However, these carbonate features are a relatively minor feature and not an essential component of the collapsible brickearth fabric. Cryoturbation and micromorphological features indicate that the calcareous brickearth fabric has probably been developed through periglacial freeze–thaw processes. Freezing could have produced the compact silt/clay aggregates and an open porous soil framework containing significant inter-ped void space. Silt and clay were remobilised and translocated deeper into the soil profile by water percolating through the active layer of the sediment profile during thawing cycles, to form the loosed packed inter-ped silt matrix and grain-bridging meniscus clay fabrics. In contrast, the upper ‘non-calcareous’ brickearth may represent a head or solifluction deposit. Mass movement during solifluction will have destroyed any delicate grain-bridging clay microfabrics that may have been present in this material

    Transverse Fresnel-Fizeau drag effects in strongly dispersive media

    Full text link
    A light beam normally incident upon an uniformly moving dielectric medium is in general subject to bendings due to a transverse Fresnel-Fizeau light drag effect. In conventional dielectrics, the magnitude of this bending effect is very small and hard to detect. Yet, it can be dramatically enhanced in strongly dispersive media where slow group velocities in the m/s range have been recently observed taking advantage of the electromagnetically induced transparency (EIT) effect. In addition to the usual downstream drag that takes place for positive group velocities, we predict a significant anomalous upstream drag to occur for small and negative group velocities. Furthermore, for sufficiently fast speeds of the medium, higher order dispersion terms are found to play an important role and to be responsible for peculiar effects such as light propagation along curved paths and the restoration of the spatial coherence of an incident noisy beam. The physics underlying this new class of slow-light effects is thoroughly discussed

    Conceptualising sustainability in UK urban Regeneration: a discursive Formation

    Get PDF
    Despite the wide usage and popular appeal of the concept of sustainability in UK policy, it does not appear to have challenged the status quo in urban regeneration because policy is not leading in its conceptualisation and therefore implementation. This paper investigates how sustainability has been conceptualised in a case-based research study of the regeneration of Eastside in Birmingham, UK, through policy and other documents, and finds that conceptualisations of sustainability are fundamentally limited. The conceptualisation of sustainability operating within urban regeneration schemes should powerfully shape how they make manifest (or do not) the principles of sustainable development. Documents guide, but people implement regeneration—and the disparate conceptualisations of stakeholders demonstrate even less coherence than policy. The actions towards achieving sustainability have become a policy ‘fix’ in Eastside: a necessary feature of urban policy discourse that is limited to solutions within market-based constraints

    Rings and bars: unmasking secular evolution of galaxies

    Full text link
    Secular evolution gradually shapes galaxies by internal processes, in contrast to early cosmological evolution which is more rapid. An important driver of secular evolution is the flow of gas from the disk into the central regions, often under the influence of a bar. In this paper, we review several new observational results on bars and nuclear rings in galaxies. They show that these components are intimately linked to each other, and to the properties of their host galaxy. We briefly discuss how upcoming observations, e.g., imaging from the Spitzer Survey of Stellar Structure in Galaxies (S4G), will lead to significant further advances in this area of research.Comment: Invited review at "Galaxies and their Masks", celebrating Ken Freeman's 70-th birthday, Sossusvlei, Namibia, April 2010. To be published by Springer, New York, editors D.L. Block, K.C. Freeman, & I. Puerari; minor change
    • …
    corecore