562 research outputs found

    Cognitive Social Psychology

    Full text link
    Social psychology is presently dominated by cognitive theories that emphasize the importance of personal beliefs and in tellective processes as the immediate determinants of behavior. The present paper explores two areas of.research within this tra dition : (1) beliefs about the external world, and (2) beliefs about the self. The paper concludes with a brief critique of the cognitive approach to social psychology.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/69030/2/10.1177_014616727700300402.pd

    Frequency dependence of Delta_nu of solar-like oscillators investigated: Influence of HeII ionization zone

    Full text link
    Oscillations in solar-like oscillators tend to follow an approximately regular pattern in which oscillation modes of a certain degree and consecutive order appear at regular intervals in frequency, i.e. the so-called large frequency separation. This is true to first order approximation for acoustic modes. However, to a second order approximation it is evident that the large frequency separation changes as a function of frequency. This frequency dependence has been seen in the Sun and in other main-sequence stars. However, from observations of giant stars, this effect seemed to be less pronounced. We investigate the difference in frequency dependence of the large frequency separation between main-sequence and giant stars using YREC evolutionary models.Comment: 4 pages, 1 figure, to appear in Astrophysics and Space Science Proceedings series of the 20th Stellar pulsation conference held in Granada (Spain) from 6 to 10 September 201

    ASTEC -- the Aarhus STellar Evolution Code

    Full text link
    The Aarhus code is the result of a long development, starting in 1974, and still ongoing. A novel feature is the integration of the computation of adiabatic oscillations for specified models as part of the code. It offers substantial flexibility in terms of microphysics and has been carefully tested for the computation of solar models. However, considerable development is still required in the treatment of nuclear reactions, diffusion and convective mixing.Comment: Astrophys. Space Sci, in the pres

    Updated guidelines for gene nomenclature in wheat

    Get PDF
    The last decade has seen a proliferation in genomic resources for wheat, including reference- and pan-genome assemblies with gene annotations, which provide new opportunities to detect, characterise, and describe genes that influence traits of interest. The expansion of genetic information has supported growth of the wheat research community and catalysed strong interest in the genes that control agronomically important traits, such as yield, pathogen resistance, grain quality, and abiotic stress tolerance. To accommodate these developments, we present an updated set of guidelines for gene nomenclature in wheat. These guidelines can be used to describe loci identified based on morphological or phenotypic features or to name genes based on sequence information, such as similarity to genes characterised in other species or the biochemical properties of the encoded protein. The updated guidelines provide a flexible system that is not overly prescriptive but provides structure and a common framework for naming genes in wheat, which may be extended to related cereal species. We propose these guidelines be used henceforth by the wheat research community to facilitate integration of data from independent studies and allow broader and more efficient use of text and data mining approaches, which will ultimately help further accelerate wheat research and breeding.EEA PergaminoFil: Boden, S. A. University of Adelaide. Waite Research Institute. School of Agriculture, Food and Wine; AustraliaFil: McIntosh, R .A. University of Sydney. School of Life and Environmental Sciences. Plant Breeding Institute; AustraliaFil: Uauy, C. Norwich Research Park. John Innes Centre; Reino UnidoFil: Krattinger, S. G. King Abdullah University of Science and Technology. Biological and Environmental Science and Engineering Division. Plant Science Program; Arabia SauditaFil: Krattinger, S. G. The Wheat Initiative; AlemaniaFil: Dubcovsky, J. University of California. Department of Plant Science; Estados UnidosFil: Dubcovsky, J. The Wheat Initiative; AlemaniaFil: Rogers, W.J. Universidad Nacional del Centro de La Provincia de Buenos Aires. Facultad de Agronomía (CIISAS, CIC-BIOLAB AZUL, CONICET-INBIOTEC, CRESCA). Departamento de Biología Aplicada; ArgentinaFil: Rogers, W.J. The Wheat Initiative; AlemaniaFIL: Xia, X. C. Chinese Academy of Agricultural Sciences. National Wheat Improvement Centre. Institute of Crop Science; ChinaFil: Badaeva, E. D. Russian Academy of Sciences. N.I. Vavilov Institute of General Genetics; RusiaFil: Bentley, A. R. International Maize and Wheat Improvement Center (CIMMYT); MéxicoFil: Bentley, A. R. The Wheat Initiative; AlemaniaFil: Brown-Guedira, G. North Carolina State University. USDA-ARS Plant Science Research; Estados UnidosFil: Brown-Guedira, G. The Wheat Initiative; AlemaniaFil: González, Fernanda G. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino. Sección Ecofisiología; ArgentinaFil: González, Fernanda G. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA, CONICET-UNNOBA-UNSADA); ArgentinaFil: González, Fernanda G. The Wheat Initiative; AlemaniaFil: Zhang, Y. Fudan University. School of Life Sciences. Institute of Plant Biology. Collaborative Innovation Center of Genetics and Development. State Key Laboratory of Genetic Engineering; Chin

    Towards a new philosophy of engineering: structuring the complex problems from the sustainability discourse

    Get PDF
    This dissertation considers three broad issues which emerge from the sustainability discourse. First is the nature of the discourse itself, particularly the underlying philosophical positions which are represented. Second, is the nature of the highly complex types of problem which the discourse exposes. And third is whether the engineering profession, as it is practised currently, is adequate to deal with such problems. The sustainability discourse exposes two distinct, fundamentally irreconcilable philosophical positions. The first, “sustainable development”, considers humanity to be privileged in relation to all other species and ecosystems. It is only incumbent upon us to look after the environment to the extent to which it is in our interests to do so. The second, “sustainability”, sees humanity as having no special moral privilege and recognises the moral status of other species, ecosystems, and even wilderness areas. Thus, sustainability imposes upon us a moral obligation to take their status into account and not to degrade or to destroy them. These two conflicting positions give rise to extremely complex problems. An innovative taxonomy of problem complexity has been developed which identifies three broad categories of problem. Of particular interest in this dissertation is the most complex of these, referred to here as the Type 3 problem. The Type 3 problem recognises the systemic complexity of the problem situation but also includes differences of the domain of interests as a fundamental, constituent part of the problem itself. Hence, established systems analysis techniques and reductionist approaches do not work. The domain of interests will typically have disparate ideas and positions, which may be entirely irreconcilable. The dissertation explores the development of philosophy of science, particularly in the last 70 years. It is noted that, unlike the philosophy of science, the philosophy of engineering has not been influenced by developments of critical theory, cultural theory, and postmodernism, which have had significant impact in late 20th-century Western society. This is seen as a constraint on the practice of engineering. Thus, a set of philosophical principles for sustainable engineering practice is developed. Such a change in the philosophy underlying the practice of engineering is seen as necessary if engineers are to engage with and contribute to the resolution of Type 3 problems. Two particular challenges must be overcome, if Type 3 problems are to be satisfactorily resolved. First, issues of belief, values, and morals are central to this problem type and must be included in problem consideration. And second, the problem situation is usually so complex that it challenges the capacity of human cognition to deal with it. Consequently, extensive consideration is given to cognitive and behavioural psychology, in particular to choice, judgement and decision-making in uncertainty. A novel problem-structuring approach is developed on three levels. A set philosophical foundation is established; a theoretical framework, based on general systems theory and established behavioural and cognitive psychological theory, is devised; and a set of tools is proposed to model Type 3 complex problems as a dynamic systems. The approach is different to other systems approaches, in that it enables qualitative exploration of the system to plausible, hypothetical disturbances. The problem-structuring approach is applied in a case study, which relates to the development of a water subsystem for a major metropolis (Sydney, Australia). The technique is also used to critique existing infrastructure planning processes and to propose an alternative approach

    Fine Root Productivity and Dynamics on a Forested Floodplain in South Carolina

    Get PDF
    The highly dynamic, fine-root component of forested wetland ecosystems has received inadequate attention in the literature. Characterizing fine root dynamics is a challenging endeavor in any system, but the difficulties are particularly evident in forested floodplains where frequent hydrologic fluctuations directly influence fine root dynamics. Fine root (\u3c 3mm) biomass, production, and turnover were estimated for three soils exhibiting different drainage patterns within a mixed-oak community on the Coosawhatchie River floodplain, Jasper County, SC. Within a 45-cm deep vertical profile, 74% of total fine root biomass was restricted to the upper 15 cm of the soil surface. Fine root biomass decreased as the soil became less well-drained (e.g., fine root biomass in well-drained soil \u3e intermediately drained soil \u3e poorly drained soil). Fine root productivity was measured for one year using minirhizotrons and in-situ screens. Both methods suggested higher fine root production in better drained soils but showed frequent fluctuations in fine root growth and mortality, suggesting the need for frequent sampling at short intervals (e.g., monthly) to accurately assess fine root growth and turnover. Fine root production, estimated with in-situ screens, was 1.5, 1.8, and 0.9 Mg ha-1 yr-1 in the well-drained, intermediately drained, and poorly drained soils, respectively. Results from minirhizotrons indicated that fine roots in well-drained soils grew to greater depths while fine roots in poorly drained soils were restricted to surface soils. Minirhizotrons also revealed that the distribution of fine roots among morphological classes changed between well-drained and poorly drained soils

    Presupernova Structure of Massive Stars

    Full text link
    Issues concerning the structure and evolution of core collapse progenitor stars are discussed with an emphasis on interior evolution. We describe a program designed to investigate the transport and mixing processes associated with stellar turbulence, arguably the greatest source of uncertainty in progenitor structure, besides mass loss, at the time of core collapse. An effort to use precision observations of stellar parameters to constrain theoretical modeling is also described.Comment: Proceedings for invited talk at High Energy Density Laboratory Astrophysics conference, Caltech, March 2010. Special issue of Astrophysics and Space Science, submitted for peer review: 7 pages, 3 figure

    Association Between Raised Inflammatory Markers and Cognitive Decline in Elderly People With Type 2 Diabetes: The Edinburgh Type 2 Diabetes Study

    Get PDF
    OBJECTIVE-To determine whether circulating levels of the inflammatory markers C-reactive protein (CRP), interleukin (IL)-6, and tumor necrosis factor (TNF)-alpha are associated with cognitive ability and estimated lifetime cognitive decline in an elderly population with type 2 diabetes. RESEARCH DESIGN AND METHODS-A cross-sectional study of 1,066 men and women aged 60-75 years with type 2 diabetes and living in Lothian, Scotland (the Edinburgh Type 2 Diabetes Study), was performed. Seven cognitive tests were used to measure abilities in memory, nonverbal reasoning, information processing speed, executive function, and mental flexibility. The results were used to derive a general intelligence factor (g). A vocabulary-based test was administered as an estimate of peak prior cognitive ability. Results on the cognitive tests were assessed for statistical association with inflammatory markers measured in a venous blood sample at the time of cognitive testing. RESULTS-Higher IL-6 and TNF-alpha levels were associated with poorer age- and sex-adjusted scores on the majority of the individual cognitive tests. They were also associated with g using standardized regression coefficients -0.074 to -0.173 (P < 0.05). After adjusting for vocabulary, education level, cardiovascular dysfunction, duration of diabetes, and glycemic control, R,6 remained associated with three of the cognitive tests and with g. CONCLUSIONS-In this representative population of people with type 2 diabetes, elevated circulating levels of inflammatory markers were associated with poorer cognitive ability. IL-6 levels were also associated with estimated lifetime cognitive decline. Diabetes 59:710-713, 201

    Biological and geophysical feedbacks with fire in the Earth system

    Get PDF
    Roughly 3% of the Earth's land surface burns annually, representing a critical exchange of energy and matter between the land and atmosphere via combustion. Fires range from slow smouldering peat fires, to low-intensity surface fires, to intense crown fires, depending on vegetation structure, fuel moisture, prevailing climate, and weather conditions. While the links between biogeochemistry, climate and fire are widely studied within Earth system science, these relationships are also mediated by fuels—namely plants and their litter—that are the product of evolutionary and ecological processes. Fire is a powerful selective force and, over their evolutionary history, plants have evolved traits that both tolerate and promote fire numerous times and across diverse clades. Here we outline a conceptual framework of how plant traits determine the flammability of ecosystems and interact with climate and weather to influence fire regimes. We explore how these evolutionary and ecological processes scale to impact biogeochemical and Earth system processes. Finally, we outline several research challenges that, when resolved, will improve our understanding of the role of plant evolution in mediating the fire feedbacks driving Earth system processes. Understanding current patterns of fire and vegetation, as well as patterns of fire over geological time, requires research that incorporates evolutionary biology, ecology, biogeography, and the biogeosciences
    corecore