343 research outputs found

    INVESTIGATION OF FLOOD FORCES ON MASONRY ARCH BRIDGES USING SPH

    Get PDF
    Masonry arch bridges constitute a substantial proportion of the existing bridge stock in the UK and elsewhere. Although this durable bridge form often demonstrates good structural performance under normal service loading, bridges spanning watercourses are vulnerable to damage from flood-induced loads. Fluvial flooding generates both hydrostatic and hydrodynamic effects on the arch superstructure in addition to well known-scour effects on the substructure, all of these have the potential to cause structural failure. While research on scour is relatively well advanced, quantification of the hydrodynamics forces on the bridge superstructure is not yet comprehensively understood. Where fast flood flows come into contact with the bridge superstructure, highly transient behaviour is observed, this may develop into violent interactions, particularly where floating debris is involved. This paper explores the novel use of smoothed particle hydrodynamics (SPH) to capture detailed pressure time histories and associated spatial distribution on masonry arches subject to fluvial flooding. SPH uses moving particles to represent the flow and is therefore ideal to simulate highly transient and potentially violent free-surface flows encountered during fast events. A typical arch bridge and representative flood flows are simulated in order to demonstrate the capability of the method. Under typical real-life flood flows, significant hydrodynamic pressures are generated which need to be considered in the assessment of such structures

    Modelling of tsunami-induced bore and structure interaction

    Get PDF
    A series of three-dimensional smoothed particle hydrodynamics (SPH) and finite-element (FE) models, with a domain in the form of a water tank, were undertaken to simulate tsunami-induced bore impact on a discrete onshore structure on a dry bed. The fluid motion was simulated using the SPH-based software DualSPHysics. The tsunami-like waves were represented by solitary waves with different characteristics generated by the numerical paddle wavemaker. Numerical probes were uniformly distributed on the structure's vertical surface providing detailed measures of the pressure distribution across the structure. The peak impact locations on the structure's surface were specifically determined and the associated peak pressures then compared with the prediction of existing commonly used design equations. Using the pressure–time histories from the SPH model, FE analysis was conducted with Abaqus to model the dynamic response of a representative timber structure. The results show that the equations used to estimate the associated pressure for design purposes can be highly non-conservative. By gaining a detailed insight into the impact pressures and structure response, engineers have the potential means to optimise the design of structures under tsunami impact loads and improve survivability. </jats:p

    Impact force of a floating woody debris on a masonry arch bridge

    Get PDF

    Incompressible smoothed particle hydrodynamics (SPH) with reduced temporal noise and generalised Fickian smoothing applied to body–water slam and efficient wave–body interaction

    Get PDF
    AbstractIncompressible smoothed particle hydrodynamics generally requires particle distribution smoothing to give stable and accurate simulations with noise-free pressures. The diffusion-based smoothing algorithm of Lind et al. (J. Comp. Phys. 231 (2012) 1499–1523) has proved effective for a range of impulsive flows and propagating waves. Here we apply this to body–water slam and wave–body impact problems and discover that temporal pressure noise can occur for these applications (while spatial noise is effectively eliminated). This is due to the free-surface treatment as a discontinuous boundary. Treating this as a continuous very thin boundary within the pressure solver is shown to effectively cure this problem. The particle smoothing algorithm is further generalised so that a non-dimensional diffusion coefficient is applied which suits a given time step and particle spacing.We model the particular problems of cylinder and wedge slam into still water. We also model wave-body impact by setting up undisturbed wave propagation within a periodic domain several wavelengths long and inserting the body. In this case, the loads become cyclic after one wave period and are in good agreement with experiment. This approach is more efficient than the conventional wave flume approach with a wavemaker which requires many wavelengths and a beach absorber.Results are accurate and virtually noise-free, spatially and temporally. Convergence is demonstrated. Although these test cases are two-dimensional with simple geometries, the approach is quite general and may be readily extended to three dimensions

    Local uniform stencil (LUST) boundary condition for arbitrary 3-D boundaries in parallel smoothed particle hydrodynamics (SPH) models

    Get PDF
    Abstract This paper presents the development of a new boundary treatment for free-surface hydrodynamics using the smoothed particle hydrodynamics (SPH) method accelerated with a graphics processing unit (GPU). The new solid boundary formulation uses a local uniform stencil (LUST) of fictitious particles that surround and move with each fluid particle and are only activated when they are located inside a boundary. This addresses the issues currently affecting boundary conditions in SPH, namely the accuracy, robustness and applicability while being amenable to easy parallelization such as on a GPU. In 3-D, the methodology uses triangles to represent the geometry with a ray tracing procedure to identify when the LUST particles are activated. A new correction is proposed to the popular density diffusion term treatment to correct for pressure errors at the boundary. The methodology is applicable to complex arbitrary geometries without the need of special treatments for corners and curvature is presented. The paper presents the results from 2-D and 3-D Poiseuille flows showing convergence rates typical for weakly compressible SPH. Still water in a complex 3-D geometry with a pyramid demonstrates the robustness of the technique with excellent agreement for the pressure distributions. The method is finally applied to the SPHERIC benchmark of a dry-bed dam-break impacting an obstacle showing satisfactory agreement and convergence for a violent flow

    Local uniform stencil (LUST) boundary condition for arbitrary 3-D boundaries in parallel smoothed particle hydrodynamics (SPH) models

    Get PDF
    This paper presents the development of a new boundary treatment for free-surface hydrodynamics using the smoothed particle hydrodynamics (SPH) method accelerated with a graphics processing unit (GPU). The new solid boundary formulation uses a local uniform stencil (LUST) of fictitious particles that surround and move with each fluid particle and are only activated when they are located inside a boundary. This addresses the issues currently affecting boundary conditions in SPH, namely the accuracy, robustness and applicability while being amenable to easy parallelization such as on a GPU. In 3-D, the methodology uses triangles to represent the geometry with a ray tracing procedure to identify when the LUST particles are activated. A new correction is proposed to the popular density diffusion term treatment to correct for pressure errors at the boundary. The methodology is applicable to complex arbitrary geometries without the need of special treatments for corners and curvature is presented. The paper presents the results from 2-D and 3-D Poiseuille flows showing convergence rates typical for weakly compressible SPH. Still water in a complex 3-D geometry with a pyramid demonstrates the robustness of the technique with excellent agreement for the pressure distributions. The method is finally applied to the SPHERIC benchmark of a dry-bed dam-break impacting an obstacle showing satisfactory agreement and convergence for a violent flow.EPSRC, Reino Unido | Ref. EP/L014890/1Ministry of Education, Universities and Research, Italia | Ref. RBSI14R1GPXunta de Galicia | Ref. ED431C 2017/64Ministerio de Economía y Competividad | Ref. ENE2016-75074-C2-1-
    • …
    corecore