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Incompressible smoothed particle hydrodynamics generally requires particle distribution smoothing to
give stable and accurate simulations with noise-free pressures. The diffusion-based smoothing algorithm
of Lind et al. (J. Comp. Phys. 231 (2012) 1499–1523) has proved effective for a range of impulsive flows
and propagating waves. Here we apply this to body–water slam and wave–body impact problems and
discover that temporal pressure noise can occur for these applications (while spatial noise is effectively
eliminated). This is due to the free-surface treatment as a discontinuous boundary. Treating this as a con-
tinuous very thin boundary within the pressure solver is shown to effectively cure this problem. The par-
ticle smoothing algorithm is further generalised so that a non-dimensional diffusion coefficient is applied
which suits a given time step and particle spacing.

We model the particular problems of cylinder and wedge slam into still water. We also model wave-
body impact by setting up undisturbed wave propagation within a periodic domain several wavelengths
long and inserting the body. In this case, the loads become cyclic after one wave period and are in good
agreement with experiment. This approach is more efficient than the conventional wave flume approach
with a wavemaker which requires many wavelengths and a beach absorber.

Results are accurate and virtually noise-free, spatially and temporally. Convergence is demonstrated.
Although these test cases are two-dimensional with simple geometries, the approach is quite general
and may be readily extended to three dimensions.
� 2013 Elsevier B.V. Open access under CC BY license.
1. Introduction

Smoothed particle hydrodynamics (SPH) is an attractive meth-
od for simulating unsteady flows with free-surfaces due to its
Lagrangian form. Free-surface tracking or capturing is not required
and hence arbitrarily complex free-surface deformations can be
handled automatically. For this reason, SPH has received consider-
able attention in simulating complex hydrodynamic problems. In
virtually all such cases, the working fluid (water) can be considered
incompressible.

Traditionally, the simulation of incompressible fluid flow by the
SPH method has been through a weakly compressible SPH formu-
lation (WCSPH). In this approach, the pressure is treated as a ther-
modynamic variable and is calculated using an artificial equation
of state. The sound speed is set to be sufficiently high to limit
density variations to within a small fraction of the actual fluid den-
sity. In practice, this high sound speed places a limitation on the
maximum permissible time-step size through the Courant–Fried-
richs–Lewy (CFL) constraint. A particular weakness relates to noise
in the pressure field since a small perturbation in the local density
will yield a large variation in the local pressure. This can make
WCSPH formulations ineffective for accurate force and pressure
prediction, although recent developments which create more uni-
form particle distributions have improved this [1,2]. A review of
the SPH method can be found in [3] while a review of the classical
WCSPH formulation applied to free-surface flows can be found in
[4].

To overcome the limitations of the WCSPH formulation, a truly
incompressible approach has been adopted based on the projection
method of Chorin [5] for a general time-stepping solution of the
incompressible Navier–Stokes equations. The method decouples
the momentum and continuity equations and enforces a diver-
gence-free velocity field, thereby satisfying the continuity condi-
tion for an incompressible fluid. The method initially solves the
momentum equations without a pressure gradient, generating an
intermediate velocity field. A Poisson equation for the pressure is
then derived such that the divergence of the intermediate velocity
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field is balanced by the divergence of the pressure gradient term.
The final velocity field at the end of the time step is thus made
to be divergence free. Cummins and Rudman [6] were probably
the first to apply the Chorin projection method to SPH. They have
demonstrated their method for internal test-cases such as vortex
spin-down and Rayleigh–Taylor instability. It was found that
satisfactory agreement with finite difference simulations could
be attained. However Cummins and Rudman noted error accumu-
lation and inhomogeneous particle distributions. Xu et al. [7] found
that this inhomogeneous particle distribution can lead to
instability in the solution, often leading to divergence, particularly
at high Reynolds number. Comparisons between WCSPH and
incompressible SPH (ISPH) have been made by Lee et al. [8] for
confined flows, and Hughes and Graham [9] for free-surface flows.

Shao and Lo [10] proposed an alternative formulation in which
density invariance is enforced directly rather than a divergence-
free velocity field. Shao [11] demonstrates good agreement against
experimental data for wedge entry cases, although the pressure
field is quite noisy [7]. Since the density is nearly homogeneous
(i.e. the particles are uniformly distributed) stability issues do
not occur.

Hu and Adams [12] proposed an algorithm whereby density
invariance and a divergence-free velocity field are both enforced,
necessitating the solution of two Poisson equations at each time
step. Several internal iterations may also be required to maintain
density invariance if the particle spacing is tending to become
highly inhomogeneous. The computational costs associated with
the method can therefore be high, but the method appears
stable.

Xu et al. [7] followed the approach of [6], imposing a diver-
gence-free velocity field. In order to avoid instability through
clumping or stretching, particles are shifted slightly across a
streamline to give a more uniform distribution at the end of each
time-step, with hydrodynamic variables being corrected to account
for their change in position through interpolation. The shifting vec-
tor is based on an averaged distance vector between the particles
within its kernel support. Xu et al. demonstrate that their method
yields high accuracy and approximately uniform particle distribu-
tions for internal flows involving vortex spin-down and lid driven
cavities. Since the shifting distance in a time step is typically an or-
der of magnitude smaller than the particle advection distance, any
interpolation errors tend to be negligible. This approach has also
been applied with the weakly compressible method with adaptive
particle sizing, reducing the pressure noise [2]. The d-SPH also pro-
duces more uniform particle distributions, reducing pressure noise
[1].

Lind et al. [13] found that the method proposed in [7] suffers
from instabilities for flows with a free surface. A crude fix is to arti-
ficially introduce high viscosity for particles close to the free sur-
face. This is clearly undesirable since it is in violation of the
required physics. Instead Lind et al. [13] proposed a shifting algo-
rithm based on Fick’s law of diffusion. The method was shown to
be highly accurate and stable, with virtually spatially noise-free
pressure predictions for free-surface cases involving both impul-
sive flows and long-term wave propagation. No special treatment
of the free-surface particles was required, other than minimising
shifting of the free-surface particles themselves in the direction
normal to the surface.

The implementation of solid boundary conditions in [13] was
however simple and not well suited to complex geometries. In
the present study, we use a more versatile body boundary condi-
tion and apply the method to the challenging problems of cylinder
and wedge slamming into initially still water and to regular wave
impact on a horizontal cylinder. Slam and wave impact loading are
important practical problems with highly distorted free-surface
motion, relating to wave impact on ships, offshore and coastal
structures, floating bodies such as wave energy or wind turbine
support systems, and fast vessel slam loads. It will be shown that
for such problems the shifting algorithm of [13] needs to be gener-
alised to provide stable shifting in different regions of the flow. In
practice, this entails the use of a local shifting coefficient for each
individual particle. Importantly, it will also be shown that spurious
temporal noise may be produced in these situations and a method
for reducing this is presented.

For wave propagation problems, the conventional scheme for
generating waves through a wave paddle representation requires
a large domain with absorption at the other end as in Lind et al.
[13]. Here, this is replaced with several pre-determined wave-
lengths in a periodic domain, thus reducing computational expense
considerably.

This paper is structured as follows. Section 2 outlines the ISPH
algorithm, boundary conditions and the diffusion based shifting
algorithm. In Section 3, we present results for an internal flow, cyl-
inder slam, wedge slam and wave–cylinder interaction. These re-
sults provide validation of the ISPH algorithm. Finally,
conclusions and closing remarks can be found in Section 4.

2. Methodology

2.1. SPH algorithm

In SPH, the integral representation of smooth function f at point
x is given by the following;

hf xð Þi ¼
Z

X
f x0ð ÞW x� x0;hð Þdx0 ð1Þ

where W x� x0;hð Þ is the smoothing function, or kernel. The volume
integral is conducted over the entire domain X (in practice, only a
small portion of the domain is integrated since W is selected to have
compact support). The operator hi is used to highlight the fact that
(1) is not exact (unless the kernel function is taken as the Dirac del-
ta function). Eq. (1) can be discretised in a straightforward manner
through numerical integration thereby forming the basis of the SPH
method.

To obtain a gradient operator, we treat the function f ðxÞ in (1) as
a gradient, i.e. f ðxÞ ¼ rgðxÞ, where gðxÞ is a smooth function. After
integration by parts (in order to transfer the gradient term to the
analytical kernel function), the gradient operator can be discretised
to give:

hr/ii � �
X

Vi /i � /j

� �
rWij ð2Þ

where Vi is the volume of particle i; / is any variable, Wij is the va-
lue of the kernel function centred on particle i at particle j, andrWij

is its gradient. The summation is performed over all particles, j,
within the support domain of i. A kernel function is chosen with
compact support in order to minimise computational costs. An
expression of similar form to (2) is obtained for the divergence
operator since the divergence operator can be decomposed into a
series of gradient operators.

Eq. (2) is used to discretise some terms of the Navier–Stokes
equations. For the viscous term, we choose the Laplacian operator
proposed by Schwaiger [14] due to the enhanced performance at a
free surface with truncated kernel support, relative to other sim-
pler formulations. While this Laplacian operator is strictly non-
conservative, it has been shown to provide highly accurate solu-
tions for many cases involving a free surface [13].

To enforce incompressibility, the projection method [6] has
been employed to ensure a divergence-free velocity field. Particles
are advected to their intermediate location through:

r�i ¼ rn
i þ Dtun

i ð3Þ
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An intermediate velocity, u�i is calculated based on the discre-
tised momentum equations without a pressure gradient:

u�i ¼ un
i þ

l
q
r2un

i þ gn
i

� �
Dt ð4Þ

where g is the gravity vector.
The pressure at time nþ 1 is obtained from a solution of the

Poisson equation;

r � 1
q
rpnþ1

� �
¼ 1

Dt
r � u�i ð5Þ

We again choose the Schwaiger Laplacian operator [14] to discretise
the left-hand side of (5).

The velocity at time nþ 1 is obtained by the projection of u�

onto divergent free space;

unþ1
i ¼ u�i �

Dt
q
rpnþ1

i ð6Þ

Finally, particles are advected to their positions at time nþ 1 by
a centred scheme:

rnþ1
i ¼ rn

i þ Dt
unþ1

i þ un
i

2

� �
ð7Þ
2.2. Diffusion based shifting

We wish to maintain a near uniform particle distribution for
stability. For the slamming cases considered herein, large free-sur-
face deformation occurs in conjunction with stagnation regions,
ultimately yielding a highly distorted non-uniform particle distri-
bution in the absence of shifting. To avoid this, Fick’s law is used
at the end of each time step in order to shift particles along the par-
ticle concentration gradient, from regions of high concentration to
regions of low concentration. Following shifting, the primitive fluid
variables are corrected to account for their change in position by a
Taylor’s series expansion.

Fick’s law is given by:

J ¼ �D0irCi ð8Þ

where J is the flux, D0i is a diffusion coefficient, and C is the concen-
tration (which can be taken to be the sum of the kernel function).

We assume that the flux, J, is proportional to a shifting velocity,
vs. From vs, a particle displacement vector, dri, can be found from
dri ¼ vsDt, which is used to update the particle positions such that:

dri / �D0iDtrCi ð9Þ

The diffusion coefficient, D0i, should be set to be large enough to
provide effective particle shifting, while not being so large as to
introduce significant errors or instabilities. An upper limit on the
diffusion coefficient can be found through a Von Neumann stability
analysis of the advection-diffusion equation:

D0i 6
1
2

h2

Dt0i
ð10Þ

where Dt0i is the maximum local time step that is permitted by the
CFL condition for a given local velocity and particle spacing (we
solve with time step Dt 6 Dt0min). The CFL condition states that:

Dt0i 6
h
uj jj ji

ð11Þ

where uj jj ji is the velocity magnitude of particle i. A value of
Dt0i ¼ 0:5h= uj jj ji is selected, corresponding to a CFL number of 0:5.
Substituting this value into (10) yields:

D0i 6 h uj jj ji ð12Þ
Combining results (9) and (12) yields:

dri ¼ �Ah uj jj jiDtrCi ð13Þ

Note that A is a dimensionless constant that is independent of
the problem setup and discretisation. A single value can thus in
principle be used for any problem. The diffusion coefficient does
not need to be manually tuned to suit a given spatial and temporal
resolution (as was the case in [13]). Values of A in the range [1,6]
have been tested, and found to work satisfactorily. It is however
desirable to minimise the diffusion coefficient to the smallest pos-
sible value that still yields effective shifting, thereby minimising
any interpolation errors that are introduced. A value of A ¼ 2 has
been found to provide a good compromise and has been used for
all problems presented here.

In Lind et al. [13], an upper limit on the shifting distance is im-
posed as 0:2h. This is necessary for stability of their algorithm since
a single global value for D0 is used for all particles. However, parti-
cles will generally have different speeds, and hence will have a dif-
ferent stability criterion to satisfy. This issue is circumvented in
[13] by setting the coefficient to be high enough to provide effec-
tive shifting for the slow moving particles, with the consequence
of it being unnecessarily high for the faster particles. The limit in
the maximum shifting distance will clip that for the faster parti-
cles, thereby satisfying some alternative stability criterion, but
consequently not fully satisfying (8). In the present study, since
the shifting diffusion coefficient is local, the enforcement of a max-
imum shifting distance is not necessary and (8) can be satisfied at
each time step. It will be shown in Section 3 that the new method
can yield a far smoother particle distribution than that of [13] for
some applications.

For the test cases presented herein, it has been found that the
CPU cost of the shifting algorithm does not exceed 5% of the overall
CPU cost for a time step.

It should be considered that, as in Lind et al. [13], an application
of the shifting algorithm violates exact momentum conservation in
an SPH sense. We shall see that despite this, the method is accu-
rate, stable and has satisfactory convergence properties.

For further details of the diffusion based shifting algorithm’s
treatment at a free surface, see Lind et al. [13].

2.3. Boundary treatment

The multiple boundary tangent method [15,16] has been em-
ployed in order to provide kernel support close to solid boundaries.
Mirror particle velocities are set by linear extrapolation in order to
yield the no-slip condition at the wall, with the following boundary
condition used for pressure:

@p
@n

����
wall

¼ �q g� duwall

dt

� �
� n ð14Þ

where n is the unit vector pointing into the fluid, normal to the solid
boundary and uwall is the velocity vector of the solid boundary.

For the test cases presented the particle resolution is not suffi-
cient to resolve the boundary layer on a solid surface. However
replacing the no-slip condition with the slip condition for the cir-
cular cylinder case (Section 3.5) produced negligible difference in
predicted forces indicating insensitivity to this boundary layer.

2.4. Discrete free-surface smoothing

Free-surface particles are identified by computing the diver-
gence of the position vector, r � r. In the bulk fluid this will equal
2 for a 2D simulation (in the limit of zero particle spacing). At
the free surface however, r � r will be substantially lower than 2.
A criterion of r � r 6 1:5 can be selected to identify free-surface
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particles, with these particles having their pressure set to zero
throughout the time step (a Dirichlet condition in the pressure
Poisson equation).

While this procedure does have the capability of providing
accurate pressure fields that are spatially noise free, temporal noise
may still occur. This is due to the fact that an infinitesimal change
in the position of a particle can lead to a dramatic change in the ap-
plied boundary condition if the particle’s status switches from free-
surface to fluid-bulk, or vice versa, according to the above criterion.
The applied boundary conditions on the pressure Poisson equation
can therefore change abruptly from one time-step to the next as
particles are advected. In order to reduce this adverse effect, we
propose a novel method for smoothing the discontinuous free sur-
face. The basic idea involves gradually introducing the effect of the
free surface over a small distance across the surface so as to avoid
the discontinuous treatment that would otherwise arise.

We use the criterion r � r P 1:6 to identify particles that con-
clusively constitute the fluid bulk. Similarly, for particles where
r � r 6 1:4 holds, a free-surface condition can safely be assumed.
For intermediate particles, where 1:4 < r � r < 1:6, we modify
the coefficients and source term of the pressure Poisson equation
such that the effect of the free-surface is introduced gradually. This
is justifiable since, for the range 1:4 < r � r < 1:6, it is unclear if a
particle is on the free-surface or not.

After discretisation, the pressure Poisson equation can be
rewritten in the following form;

aiiPi þ
X

aiaijPj ¼ aibi ð15Þ

where aij are the coefficients of the Poisson equation, and the sum-
mation is conducted over all particles within the support domain of
particle i (excluding particle i itself). The coefficient a appears in
(15) in order to implement the free-surface boundary condition,
and takes the following value:

a ¼
0 if r � r 6 1:4
1
2 1� cos r�r�1:4

1:6�1:4

� �	 

if 1:4 < r � r < 1:6

1 if r � r P 1:6

8><
>: ð16Þ

The range (1.4,1.6) for r � r, over which discrete free-surface
smoothing has been applied, has been selected since this was
found to be large enough to provide satisfactory temporal noise
reduction, whilst not being so large as to affect adversely the sim-
ulation (e.g. due to contamination of the smoothing effect into the
fluid bulk, or due to the over-smoothing of the free-surface).

Note that due to the diagonal dominance of the coefficient ma-
trix, aii is guaranteed to be greater than 0, and hence a singularity
in the iterative solver is avoided. Eq. (15) is solved iteratively by
the sparse preconditioned Bi-CGSTAB method [17].
-0.5

0

0.5

1

1.5

0 0.5 1 1.5 2

α

Δ r

Smoothed free-surface function
Unmodifieds tep function

.

Fig. 1. Plot of the function a.
Fig. 1 illustrates the value of the function aðr � rÞ. The plot also
shows the original step function for a that is generally employed.
The improvements that the smoothing of the free-surface yields
will be shown for the case of cylinder slam (Section 3.3) and wave
impact onto a circular cylinder (Section 3.5).

3. Results

For all simulations presented in this work, we employ the quin-
tic spline kernel with initially uniform particle spacing and a
smoothing length equal to 1:3 times this spacing, which is quite
standard.

3.1. Circular Couette flow

In order to test both the present implementation of the multiple
boundary tangent method and the modified shifting algorithm, we
first consider the simple case of circular Couette flow. Fig. 2 shows
the geometry and problem setup. The radius of the inner wall (ri) is
equal to 1m while that of the outer wall (ro) is equal to 2 m. We set
the inner wall to rotate with angular velocity x ¼ 0:2rads�1 while
the outer wall is stationary. The no-slip condition is enforced on
both walls. The gravity vector is zero. The analytical solution for
the velocity field can be obtained from the Navier–Stokes
equations:

uh ¼ rix
ro=r � r=ro

ro=ri � ri=ro
ð17Þ

where uh is the circumferential velocity component (the radial
velocity is zero).

We advance in time until a steady state solution is obtained.
Several different initial particle spacings in the range
(0.003,0.025)m have been considered in order to assess the conver-
gence rate (resulting in 40–333 particles between the inner and
outer walls). Fig. 3 shows the circumferential velocity component
with analytical comparison. The non-linear nature of the flow, in-
duced by the radial pressure gradient that is necessary in order
to balance the centrifugal force associated with streamline curva-
ture, is apparent from the plot. The agreement between computed
and analytical results is clearly very good, as should be expected
for this simple case.
Fig. 2. Geometry schematic; circular Couette flow.
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ms�1.

Fig. 5. Geometry schematic; impulsively started plate.

Fig. 6. Impulsively started plate. Free-surface particles’ positions at times
0.2 s, 0.4 s, 0.6 s and 0.8 s from left to right respectively.
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The effect of spatial refinement is shown in Fig. 4, from which it
is apparent that the discretised numerical scheme is slightly better
than first order. Such a convergence rate is typical for SPH. Similar
convergence has been observed for plain Couette flow with mirror
particles, thereby suggesting that the boundary condition for the
curved surface does not adversely affect convergence rate.

3.2. Impulsively started plate

Here we consider a vertical plate which is started impulsively
with steady velocity U ¼ 0:2m � s�1, following [13]. The plate drives
a 2 m by 0.5 m body of water which is initially at rest. Fig. 5 shows
the case setup.

A jet of water forms asymptotically against the face of the plate.
An analytical solution for the free-surface elevation (g) is available
[18]:

g ¼ �2Ut
p

ln tanh
p x� Utð Þ

4D

� �� �
þ D ð18Þ

where D is the initial water depth. In (18), it has been assumed that
gravity and viscous affects are zero, which is a reasonable physical
approximation over the initial stages of flow development.

We have performed ISPH simulations of this case using an
initial particle spacing of 0.0125 m. Fig. 6 shows the free surface
elevation at times 0.2 s, 0.4 s, 0.6 s, and 0.8 s. From the figure, it
is apparent that the agreement with the analytical solution is
satisfactory.

Tests have been conducted with four different initial particle
spacings in the range [0.006 m, 0.04 m]. Fig. 7 shows the L2 norm
1e-05

0.0001

0.001

0.001 0.01 0.1

1.2

Fig. 4. Convergence study for circular Couette flow; plot showing the L2 norm of
the error in particles’ velocity for various particle spacings in the range
(0.003,0.025) m.

Fig. 7. Impulsively started plate; plot showing the L2 norm of the error in free-
surface elevation for various particle spacings in the range [0.006 m,0.04 m]. Solid
line denotes linear convergence.
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of the error in free-surface elevation predicted by the SPH algo-
rithm for the various particle spacings considered. From the figure,
it is apparent that the method is again slightly better than first or-
der, importantly showing that there is no adverse affect of the free-
surface boundary treatment on the convergence rate.

Numerical experiments have been performed in order to assess
the performance of the new diffusion based shifting algorithm.
Fig. 8 shows the free-surface elevation at time t ¼ 0:6 s with both
a global manually tuned diffusion coefficient [13], and the new
local coefficient (Section 2.2). From the figure it can be seen that
the new shifting methodology yields a marked improvement in
the particle distribution for this case.

3.3. Cylinder water entry

The motion of a circular cylinder dropping onto initially still
water has been investigated experimentally by Greenhow and
Lin [19]. The cylinder has a diameter of 0.11 m and a density of
500 kg �m�3 (i.e. that of a half buoyant cylinder). The initial dis-
tance between the axis of the cylinder and the undisturbed free
surface was equal to 0.5 m, while the distance from the tank bed
to the undisturbed free surface was equal to 0.3 m. The cylinder
is initially released from rest and falls under the influence of
gravity.
Fig. 8. Impulsively started plate; free-surface particles’ positions at t ¼ ½0:6� s.
Shifting methodology outlined in [13] (above) is compared with the present
method (below).
Incompressible SPH simulations have been conducted with an
initial uniform particle spacing set equal to 0.0015 m. Tank side
walls were placed 0.5 m from the initial impact point. This value
was found through a parametric study aiming to eliminate side
wall interference (since the experimental tank was large) while
minimising computational costs. The computational setup resulted
in a total of approximately 135;000 particles. A sensitivity study
has been carried out with 50% extra particles (with a correspond-
ingly lower time step in accordance with the CFL condition), with
no appreciable difference in the solution, and hence the present re-
sults can be considered independent of the discretisation.

An overview of the pressure field and free-surface elevation at
several time steps is shown in Fig. 9. It can be seen that strong jets
form on both sides of the cylinder. By t ¼ 0:44 s, it can be seen that
the separation points have started to move towards the top of the
cylinder due to the cylinder’s rapid vertical deceleration under the
influence of buoyancy. By t ¼ 0:56 s, the water columns have col-
lapsed, and collided with one another, generating a vertical jet
above the cylinder. It is clear from Fig. 9 that the pressure field is
effectively spatially noise free.
Fig. 9. Cylinder of half buoyant mass dropping into initially still water. (a)
t ¼ 0:332 s. (b) t ¼ 0:365 s. (c) t ¼ 0:44 s. (d) t ¼ 0:56 s. Time t ¼ 0 is at the
cylinder’s release, 0:3 s prior to impact.



Fig. 11. Predicted vertical pressure force over the initial stages for a cylinder of half
buoyant mass, dropped from a height of 0.5 m. Force is normalised with respect to
the weight of the cylinder F 0y ¼ Fy=ðqcylinderð1=4ÞðpD2ÞÞ.
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We note that the computed separation points and free-surface
elevation seem to agree qualitatively with the measured data
available in [19], although the photographic data in [19] is of poor
quality, so detailed comparison is difficult. It is clear nonetheless,
that the agreement we see is significantly better than that reported
in [20], where a weakly compressible SPH formulation was em-
ployed for the same problem.

Fig. 10 shows how the depth of penetration of the cylinder
evolves with time. Again, experimental comparison is made with
[19] up to t ¼ 0:42 s, after which there is no experimental data
available. It can be seen that there is generally a very good initial
agreement between the computed and measured results, suggest-
ing that the correct forces acting on the cylinder are predicted.
However, we point out that for the final measured datum point
there is moderate discrepancy, although similar discrepancies are
also noted in [20,21] in which weakly compressible SPH and con-
strained interpolation profile methods, respectively, are employed.
The data from [20] are also provided in the figure, showing close
agreement.

Fig. 11 shows the evolution of the vertical component of the
pressure force, integrated over the cylinder’s surface. In the figure,
comparisons are made both with and without the discrete free-
surface smoothing method active (Section 2.4). From the plot, it
is apparent that the temporal noise predicted by the SPH algorithm
is significantly reduced by the smoothing.

3.4. Forced wedge entry

In this section we consider the forced entry of a wedge into ini-
tially still water. The wedge has a prescribed constant vertical
velocity, V. We consider three different deadrise angles equal to
30�, 40� and 60� (where the deadrise angle is defined as the angle
between the inclined surface of the wedge and the horizontal).
Comparisons are made with asymptotic solutions provided in [22].

During the initial stages of impact (i.e. before jet flow separa-
tion) the normalised free-surface elevation and surface pressure
coefficient distribution are independent of the penetration depth.
When making comparisons with the asymptotic solutions, the final
time step prior to flow separation was therefore selected, since this
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Fig. 10. Depth of penetration for a cylinder of half buoyant mass, dropped from a
height of 0.5 m.
gives the highest effective spatial resolution (i.e. the greatest num-
ber of wetted boundary particles along the inclined wedge sur-
face). A total of 100 wetted boundary particles along the inclined
surface have been used in all cases, yielding a total of around
200,000 particles.

An overview of the solution (with the deadrise angle set to 30�)
is shown in Fig. 12, for several time steps. As the wedge penetrates
the free-surface, jets form symmetrically along the inclined wall.
By t ¼ 0:023 s, the jets have separated from the inclined wall,
and the fluid displacement by the wedge generated columns of
water in a similar manner to that seen for the cylinder entry. It
can be seen that the jets appear to be fragmented. This is contrary
to SPH simulations performed by Oger et al. [23] in which smooth
continuous jets were predicted. However in [23], a variable initial
particle distribution has been employed in order to provide very
fine spatial resolution around the impact zone, while maintaining
acceptable computational costs. To resolve adequately the jet
structure in the present study (to the same resolution as [23]),
while using a uniform initial particle distribution, in excess of 20
million particles would be required. It is expected that with such
a refined simulation, improvements to the predicted jet structure
would be achieved.

Fig. 13 shows the pressure distribution along the inclined sur-
face for the three deadrise angles considered. It can be seen that
the pressure is generally higher at lower deadrise angles since
the wedge shape is flatter and hence the slamming is more severe.
It can also be seen from the figure that the agreement is very good
between the present results and the asymptotic results presented
in [22]. While there is some noise evident in the pressure, simula-
tions have shown that this is increased with further spatial coars-
ening, suggesting that discretisation error may be the problem. It
was however not feasible to further refine the particle spacing
due to high computational costs (around 48 h on a single CPU).
In any case, the noise is a small effect.

3.5. Forces exerted on a circular cylinder by regular wave impact

We consider the impact of regular waves on a fixed circular
cylinder. The cylinder is partially submerged (relative to the mean



Fig. 12. Wedge with 30� deadrise angle, dropping into initially still water. (a)
t ¼ 0:011 s. (b) t ¼ 0:023 s. (c) t ¼ 0:036 s. Time t ¼ 0 is at the instant of initial
impact.

Fig. 13. Pressure distribution along inclined surface of wedge for three different
deadrise angles. Lines: ISPH, Symbols: asymptotic data from [22].

Fig. 14. Wave height over first 25 periods for a regular wave propagating in a
periodic domain.
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free-surface level). Different submergence depths and wave
amplitudes have been considered. Measured vertical force data
are available in [24]. This case has been simulated previously
with SPH by Omidvar et al. [25] who used an Arbitrary
Lagrange–Euler (ALE) formulation with an embedded Riemann
solver.
3.5.1. Efficient wave generation
Regular waves of period T are generated prior to commencing

the SPH simulations. The wave kinematics are specified through
the method of Rienecker and Fenton [26], in which a Fourier series
for the streamfunction is employed in order to generate a system of
equations defining the potential flow (satisfying both the unsteady
Bernoulli equation on the free surface and continuity below the
surface). The resulting system of equations can be rapidly solved
by Newton’s method to obtain an almost exact solution for the
flow field throughout the domain (to within numerical roundoff er-
ror, assuming the series is not prematurely truncated). SPH parti-
cles are then initialised with this velocity field, and are placed in
a periodic domain (with translational periodicity applied between
successive wave crests). This method is clearly attractive since the
waves need not be generated through the use of a paddle, as is typ-
ically the case for numerical wave simulations, thereby signifi-
cantly reducing the domain size and runtime costs. Due to the
periodicity, the need for the buffering of particles outside of the
computational domain is also avoided.

To test the new wave generation method, a single wavelength is
first placed in a periodic domain in the absence of the cylinder. The
wavelength is 3.912 m corresponding to a wave period of 1.629 s,
the wave height is 0.25 m, the mean water depth is 1 m, and the
initial particle spacing varies in the range [0.0039,0.0156]. The
wave is allowed to propagate in accordance with the ISPH govern-
ing equations over several periods. Fig. 14 shows the variation of
the normalised wave height with time obtained for three different
particle spacings to demonstrate convergence. It is evident that the
rate of wave height decay due to viscous action and numerical dif-
fusion is small over 3–4 wave periods for all resolutions consid-
ered. Furthermore the rate of wave height decay due to internal
viscous stresses, without bed effects, may be approximated assum-
ing linear theory [27]. For this case a decrease in wave height of
0:2% per period is predicted, or 1% over five periods, and this is
seen to be in approximate agreement with results for the finest
particle resolution shown in Fig. 14.

3.5.2. Wave impact on a cylinder
The problem setup can be characterised by the cylinder sub-

mergence depth (d), the cylinder diameter (D), the wave amplitude
(a), the mean water depth (h), and the wavelength (k) (see Fig. 15).
All dimensions are normalised with respect to the cylinder diame-
ter to give d0; h0; a0 and k0. Table 1 shows the values used in the
present study.

Since the domain is periodic, there must be a sufficient number
of wavelengths for the initially regular waves to interact with the
cylinder to generate periodic forcing; the outer boundaries should
be sufficiently far from the body so that waves reflected and trans-
mitted by the cylinder do not affect the periodic forces. Three



Fig. 15. Schematic of wave-cylinder case.

Table 1
Different setups considered.

Simulation

1 2 3

d0 0.0 0.0 0.4
a0 0.3 0.5 0.3
k0 15.62 15.62 15.62

h0 4 4 4
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wavelengths within a periodic SPH domain have been found to be
sufficient to capture the flow characteristics with acceptable accu-
racy for up to three periods. Tests have also been conducted with
five wavelengths, with only small differences in the third period
observed.

The no-slip condition is enforced on the cylinder surface and the
slip boundary condition on the bed (consistent with stream func-
tion theory). The particle spacing has been set to 0:04D for all sim-
ulations (corresponding to the coarse resolution considered in
Fig. 14), resulting in around 120;000 particles. A convergence
study has been carried out with 80;000 particles, with a corre-
spondingly larger time-step in accordance with the CFL criterion.
No appreciable difference in vertical force between the two resolu-
tions was observed.

Fig. 16 gives an overview of the entire domain, and illustrates
particle positions and pressures at time t=T ¼ 0:43 for Simulation
2.

To compare the simulated results with the measured data, the
vertical force acting on the cylinder is normalised with respect to
the weight of water that a fully submerged cylinder would
displace:

F 0 ¼ Fy

gq ð1=4ÞpD2
� � ð19Þ
Fig. 16. Wave impact on a circular cylinder from Simulation 2, showing periodic SPH
Table 2 shows the root mean square normalised vertical force,
taken over the second and third periods for the different setups gi-
ven in Table 1. Data from [24] is included for comparison. It can be
seen that the agreement is satisfactory; within 5% of the measured
data in all instances.

For Simulation 2, F 0rms is also computed for an extended compu-
tational domain of five wavelengths. In this case, F 0rms taken over
the second and third periods is equal to 0:271; less than a 2% dif-
ference from the value obtained for three wavelengths.

Fig. 17 shows the normalised vertical force acting on the cylin-
der, over the first three periods, for Simulation 1. Note that in order
to be consistent with the experimental data, the time t ¼ 0 is set as
the instant when the free-surface of the wave in the absence of the
cylinder would intersect the point located at the cylinder’s leading
edge, with the wave crest approaching. We include data for the
first computed period, but make no experimental comparison over
this period since the domain is initialised with the cylinder displac-
ing water in the wave field, giving initial forces atypical of regular
periodic wave interaction. It is evident from the figure that the
agreement between computed and measured results is quite close.

Fig. 18 shows results for an increased wave amplitude (Simula-
tion 2). The initial peak in F 0 for each cycle occurs at
t=T � 0:15þ i; i ¼ 0;1;2, where i is the cycle number; this corre-
sponds to the instant at which the cylinder is first fully submerged.
Following this, the vertical force drops slightly as the wave crest
approaches. This is due to the weight of water above the cylinder
as the cylinder becomes increasingly submerged. Between
0:3þ i < t=T < 0:4þ i, the vertical force is approximately constant
as the wave crest passes over the top of the cylinder (there is little
change in free-surface elevation during this interval since the
wavelength is significantly longer than the cylinder diameter). Fol-
lowing the passing of the wave crest, there is a brief secondary
peak in the vertical force at t=T � 0:45þ i. This secondary force
peak is associated with the passing of the wave’s crest, and hence
the reduction of fluid above the cylinder, while the cylinder re-
mains fully submerged. Following the secondary peak, the vertical
force drops to a minimum due to the approach of the wave trough;
the reduction in cylinder’s submergence causes a reduced buoy-
ancy force. The cycle then repeats. Agreement with the experimen-
tal data is satisfactory.

Fig. 19 show the normalised vertical force for Simulation 3. The
qualitative features of the flow for this are similar to those ob-
served for Simulation 2, and hence the vertical force plot follows
a similar pattern. The increased submergence of the cylinder
makes this case more challenging than the prior cases. Despite this,
the agreement with the experimental data is good. In comparison
with the results of Omidvar et al. [25] for F 0rms, the scheme pre-
sented in this paper achieves better agreement with experiment
domain and particle pressure. Inset shows close-up around cylinder. t=T ¼ 0:43



Table 2
Root mean square vertical force acting on the cylinder over the second and third
periods. Different simulations given in Table 1. Experimental values are from [24].

Simulation SPH F 0rms Exp. F 0rms

1 0.174 0.172
2 0.276 0.264
3 0.122 0.118

Fig. 17. Vertical force acting on cylinder for Simulation 1
(a0 ¼ 0:3; d0 ¼ 0:0; k0 ¼ 15:62).

Fig. 18. Vertical force acting on cylinder for Simulation 2
(a0 ¼ 0:5; d0 ¼ 0:0; k0 ¼ 15:62).

Fig. 19. Vertical force acting on cylinder for Simulation 3
(a0 ¼ 0:3; d0 ¼ 0:4; k0 ¼ 15:62).

Fig. 20. Effect that discrete free-surface smoothing has upon the predicted vertical
force for Simulation 2.
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for the deeper relative submergence, while the scheme of Omidvar
et al. was better for the cylinder placed at the surface, d0 ¼ 0.
Importantly however, when comparing the results for the force
time histories, the results here show significantly better agree-
ment, particularly in the reduction of spurious oscillations.
Before finishing this Section, we would like to highlight the ef-
fect of the free-surface smoothing method (Section 2.4). Fig. 20
shows the vertical force acting on the cylinder for Simulation 2,
both with and without the smoothing activated. From the figure,
it is clear that the smoothing provides a significant reduction in
temporal noise.

4. Conclusions

In this paper, we have applied the incompressible SPH method
with diffusion-based shifting for stability to the problems of cylin-
der and wedge impact on still water and wave impact on a cylin-
der. To achieve stable and accurate results we have provided a
general method for setting the diffusion coefficient for shifting,
based on the particle spacing, time-step size, and local fluid veloc-
ity magnitude.

We also present a new method for significantly reducing the
temporal noise from free-surface effects that may occur in an
incompressible SPH simulation. In this method the effect of parti-
cles in a narrow region close to the free surface, defined by the
divergence of the position vector, is introduced smoothly into the
pressure Poisson equation rather than as a step change. It has been
shown that this approach drastically reduces temporal noise for
various fluid–structure interaction cases; with the step change
the temporal (as distinct from spatial) noise can be considerable.

For the cylinder drop case, the cylinder motion is accurately
predicted and the jet-like flows are qualitatively similar to
experiment. For the constant-velocity wedge impact cases surface
pressures agree well with asymptotic solutions. Importantly, pres-
sures are almost noise-free, both in space and time.

For the wave impact cases we use the novel and efficient ap-
proach where the initial conditions are several wavelengths of a
progressive nonlinear wave field within a periodic domain into
which the cylinder is introduced centrally. The loads quickly be-
come cyclic, after the first wave period, and there is good agreement
with experiment. This is much more efficient than the usual numer-
ical wave flume approach where waves are generated by a paddle at
one end of the flume which must be many wavelengths long.

To the authors’ knowledge, the predictions for these test cases
are more accurate than has previously been obtained by other
SPH methods and, although they are two-dimensional with simple
geometries, the approach is quite general and may be readily ex-
tended to three dimensions.
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