3,932 research outputs found

    Derivations and Dirichlet forms on fractals

    Get PDF
    We study derivations and Fredholm modules on metric spaces with a local regular conservative Dirichlet form. In particular, on finitely ramified fractals, we show that there is a non-trivial Fredholm module if and only if the fractal is not a tree (i.e. not simply connected). This result relates Fredholm modules and topology, and refines and improves known results on p.c.f. fractals. We also discuss weakly summable Fredholm modules and the Dixmier trace in the cases of some finitely and infinitely ramified fractals (including non-self-similar fractals) if the so-called spectral dimension is less than 2. In the finitely ramified self-similar case we relate the p-summability question with estimates of the Lyapunov exponents for harmonic functions and the behavior of the pressure function.Comment: to appear in the Journal of Functional Analysis 201

    Smooth bumps, a Borel theorem and partitions of smooth functions on p.c.f. fractals

    Full text link
    We provide two methods for constructing smooth bump functions and for smoothly cutting off smooth functions on fractals, one using a probabilistic approach and sub-Gaussian estimates for the heat operator, and the other using the analytic theory for p.c.f. fractals and a fixed point argument. The heat semigroup (probabilistic) method is applicable to a more general class of metric measure spaces with Laplacian, including certain infinitely ramified fractals, however the cut off technique involves some loss in smoothness. From the analytic approach we establish a Borel theorem for p.c.f. fractals, showing that to any prescribed jet at a junction point there is a smooth function with that jet. As a consequence we prove that on p.c.f. fractals smooth functions may be cut off with no loss of smoothness, and thus can be smoothly decomposed subordinate to an open cover. The latter result provides a replacement for classical partition of unity arguments in the p.c.f. fractal setting.Comment: 26 pages. May differ slightly from published (refereed) versio

    Residual acceleration data on IML-1: Development of a data reduction and dissemination plan

    Get PDF
    A residual acceleration data analysis plan is developed that will allow principal investigators of low-gravity experiments to efficiently process their experimental results in conjunction with accelerometer data. The basic approach consisted of the following program of research: (1) identification of sensitive experiments and sensitivity ranges by order of magnitude estimates, numerical modelling, and investigator input; (2) research and development towards reduction, supplementation, and dissemination of residual acceleration data; and (3) implementation of the plan on existing acceleration data bases

    Besov class via heat semigroup on Dirichlet spaces III: BV functions and sub-Gaussian heat kernel estimates

    Full text link
    With a view toward fractal spaces, by using a Korevaar-Schoen space approach, we introduce the class of bounded variation (BV) functions in a general framework of strongly local Dirichlet spaces with a heat kernel satisfying sub-Gaussian estimates. Under a weak Bakry-\'Emery curvature type condition, which is new in this setting, this BV class is identified with a heat semigroup based Besov class. As a consequence of this identification, properties of BV functions and associated BV measures are studied in detail. In particular, we prove co-area formulas, global L1L^1 Sobolev embeddings and isoperimetric inequalities. It is shown that for nested fractals or their direct products the BV class we define is dense in L1L^1. The examples of the unbounded Vicsek set, unbounded Sierpinski gasket and unbounded Sierpinski carpet are discussed.Comment: The notes arXiv:1806.03428 will be divided in a series of papers. This is the third paper. v2: Final versio
    corecore