We provide two methods for constructing smooth bump functions and for
smoothly cutting off smooth functions on fractals, one using a probabilistic
approach and sub-Gaussian estimates for the heat operator, and the other using
the analytic theory for p.c.f. fractals and a fixed point argument. The heat
semigroup (probabilistic) method is applicable to a more general class of
metric measure spaces with Laplacian, including certain infinitely ramified
fractals, however the cut off technique involves some loss in smoothness. From
the analytic approach we establish a Borel theorem for p.c.f. fractals, showing
that to any prescribed jet at a junction point there is a smooth function with
that jet. As a consequence we prove that on p.c.f. fractals smooth functions
may be cut off with no loss of smoothness, and thus can be smoothly decomposed
subordinate to an open cover. The latter result provides a replacement for
classical partition of unity arguments in the p.c.f. fractal setting.Comment: 26 pages. May differ slightly from published (refereed) versio