47 research outputs found

    Enterprise Liability, Public and Private

    Get PDF
    In Sweden, where forests cover more than 60% of the land area, silviculture and the use of forest products by industry and society play crucial roles in the national carbon balance. A scientific challenge is to understand how different forest management and wood use strategies can best contribute to climate change mitigation benefits. This study uses a set of models to analyze the effects of different forest management and wood use strategies in Sweden on carbon dioxide emissions and removals through 2105. If the present Swedish forest use strategy is continued, the long-term climate change mitigation benefit will correspond to more than 60 million tons of avoided or reduced emissions of carbon dioxide annually, compared to a scenario with similar consumption patterns in society but where non-renewable products are used instead of forest-based products. On average about 470 kg of carbon dioxide emissions are avoided for each cubic meter of biomass harvested, after accounting for carbon stock changes, substitution effects and all emissions related to forest management and industrial processes. Due to Sweden’s large export share of forest-based products, the climate change mitigation effect of Swedish forestry is larger abroad than within the country. The study also shows that silvicultural methods to increase forest biomass production can further reduce net carbon dioxide emissions by an additional 40 million tons of per year. Forestry’s contribution to climate change mitigation could be significantly increased if management of the boreal forest were oriented towards increased biomass production and if more wood were used to substitute fossil fuels and energy-intensive materials

    Net primary energy balance of a solar-driven photoelectrochemical water-splitting device

    Get PDF
    A fundamental requirement for a renewable energy generation technology is that it should produce more energy during its lifetime than is required to manufacture it. In this study we evaluate the primary energy requirements of a prospective renewable energy technology, solar-driven photoelectrochemical (PEC) production of hydrogen from water. Using a life cycle assessment (LCA) methodology, we evaluate the primary energy requirements for upstream raw material preparation and fabrication under a range of assumptions of processes and materials. As the technology is at a very early stage of research and development, the analysis has considerable uncertainties. We consider and analyze three cases that we believe span a relevant range of primary energy requirements: 1550 MJ m(-2) (lower case), 2110 MJ m(-2) (medium case), and 3440 MJ m(-2) (higher case). We then use the medium case primary energy requirement to estimate the net primary energy balance (energy produced minus energy requirement) of the PEC device, which depends on device performance, e. g. longevity and solar-to-hydrogen (STH) efficiency. We consider STH efficiency ranging from 3% to 10% and longevity ranging from 5 to 30 years to assist in setting targets for research, development and future commercialization. For example, if STH efficiency is 3%, the longevity must be at least 8 years to yield a positive net energy. A sensitivity analysis shows that the net energy varies significantly with different assumptions of STH efficiency, longevity and thermo-efficiency of fabrication. Material choices for photoelectrodes or catalysts do not have a large influence on primary energy requirements, though less abundant materials like platinum may be unsuitable for large scale-up

    Life-Cycle Energy and Carbon Implications of Wood-Based Products and Construction

    No full text
    Forests can be an important element of an overall strategy to limit the atmospheric concentration of carbon dioxide (CO2) that contributes to climate change. As an integral part of the global carbon cycle, forests remove CO2 from the atmosphere as they grow, and accumulate carbon in tree biomass. Using wood products made from sustainably managed forests can reduce net CO2 emission by substituting in place of fossil fuels and energy-intensive materials. In this thesis the mechanisms by which wood product substitution can affect energy and carbon balances are studied. These include: the energy needed to manufacture wood products compared with alternative materials; the avoidance of industrial process carbon emission from e.g. cement manufacture; the use of wood by-products as biofuel to replace fossil fuels; and the physical storage of carbon in forests and wood materials. A methodological framework is first developed by integrating knowledge from the fields of forestry, industry, construction, and energy. A life cycle perspective is employed encompassing the entire product chain from natural resource acquisition to material disposal or reuse. Analytical challenges that are addressed include the functional unit of comparison, the fossil reference system, land use issues of wood vs. non-wood materials, and the diverse phases of the product life cycle. The methodology is then applied to two multi-storey wood-framed buildings in Sweden and Finland, compared with two functionally equivalent buildings with reinforced concrete structural frames. The results show that less primary energy is needed to produce the wood-framed buildings than the concrete-frame buildings. CO2 emission is significantly lower for the wood-frame buildings, due to reductions in both fossil fuel use and cement calcination process emission. The most important single factor affecting the energy and carbon balances is the use of biomass by-products from the wood product chain as biofuel to replace fossil fuels. Over the life cycle of the wood-framed buildings, the energy of biomass residues from forest operations, wood processing, construction and demolition is greater than the energy inputs to produce the materials in the buildings. Realisation of this benefit is facilitated by integrating and optimising the biomass and energy flows within the forestry, industrial, construction, energy, and waste management sectors. Different forest management regimes are studied in an integrated carbon analysis to quantify the carbon flows and stocks associated with tree biomass, soils, and forest products. Intensified forest management that produces greater quantities of biomass leads to net CO2 emission benefits by augmenting the potential to substitute for fossil fuels and non-wood materials. The increased energy use and carbon emission required for the more intensive forest management, as well as the slight reduction in soil carbon accumulation due to greater removal of forest residues, are more than compensated for by the emission reduction due to product substitution. Carbon stock changes in forests and wood materials can be temporarily significant, but over the building life cycle and forest rotation period the stock change becomes insignificant. In the long term, the active and sustainable management of forests, including their use as a source for wood products and biofuels, allows the greatest potential for reducing net CO2 emission. Implementation issues related to the wider use of wood-based materials to reduce energy use and carbon emission are also explored. An analysis of the effects of energy and taxation costs on the economic competitiveness of materials shows that the cost of energy for material processing, as a percentage of the total cost of finished material, is lower for wood products than for other common non-wood building materials. Energy and carbon taxation affects the cost of wood products less than other materials. The economic benefit of using biomass residues to substitute for fossil fuels also increases as tax rates increase. In general, higher taxation of fossil fuels and carbon emission increases the economic competitiveness of wood construction. An analysis of added value in forest product industries shows that greater economic value is added in the production of structural building materials than in other uses of forest biomass. Co-production of multiple wood-based products increases the total value that is added to the biomass produced on an area of forest land. The results show that production of wood-based building material is favoured economically by climate change mitigation policies, and creates high added value within forest product industries.Skogsresurser kan utgöra en viktig del i en strategi för att begrĂ€nsa koncentrationen av koldioxid (CO2) i atmosfĂ€ren och dĂ€rmed begrĂ€nsa klimatförĂ€ndringarna. Skog tar upp CO2 frĂ„n atmosfĂ€ren nĂ€r den vĂ€xer och kolet lagras i trĂ€dens biomassa. TrĂ€dprodukter frĂ„n hĂ„llbart brukade skogar kan minska nettoutslĂ€ppen av CO2 genom att de kan ersĂ€tta fossilt brĂ€nsle och energiintensiva material. I denna avhandling studeras faktorer som pĂ„verkar energi- och kolbalanser nĂ€r trĂ€produkter ersĂ€tter alternativa produkter. Signifikanta faktorer Ă€r den energi som behövs för att framstĂ€lla trĂ€produkter jĂ€mfört med alternativa produkter, utslĂ€pp av CO2 frĂ„n industriella processer som vid cementproduktion, ersĂ€ttning av fossilt brĂ€nsle med trĂ€rester samt lagring av kol i skog och trĂ€produkter. En metodik har utvecklats för att studera dessa faktorer genom att integrera Ă€mneskunskaper frĂ„n byggkonstruktion, energi, industri och det skogliga omrĂ„det. Den bygger pĂ„ ett livscykelperspektiv och innefattar hela material- och produktkedjor frĂ„n naturresurs till avfall eller Ă„teranvĂ€ndning av material eller produkter. De metodikfrĂ„gor som varit i fokus Ă€r den funktionella enheten för jĂ€mförelser, det fossila referenssystemet, utnyttjande av skogmark vid produktion av trĂ€produkter samt produktens olika faser under en livscykel. Metodiken har sedan anvĂ€nts för att jĂ€mföra ett svenskt och ett finskt flervĂ„ningshus i trĂ€ med tvĂ„ funktionellt likvĂ€rdiga hus med betongstomme. Resultaten visade att det behövs mindre primĂ€renergi för att tillverka trĂ€huset Ă€n betonghuset. Energin som kan utvinnas frĂ„n biprodukter under en trĂ€byggnads livscykel – frĂ„n skogsskötsel, förĂ€dling, konstruktion och rivning – Ă€r större Ă€n den energi som krĂ€vs för att tillverka byggnadsmaterialet i byggnaden. NettoutslĂ€ppen av CO2 frĂ„n bĂ„de fossil primĂ€renergi och cementkalcinering Ă€r ocksĂ„ vĂ€sentligt lĂ€gre för trĂ€huset, men anvĂ€ndningen av biprodukter frĂ„n skogsavverkning, trĂ€förĂ€dlingskedjan och rivningsvirke för att ersĂ€tta fossilt brĂ€nsle har störst pĂ„verkan pĂ„ kolbalansen. För att fullt ut tillgodogöra sig biprodukters potentiella fördelar krĂ€vs att de olika sektorerna för skogsbruk, industri, konstruktion, energi och avfallshantering integreras och optimeras med avseende pĂ„ energi- och materialflöden. Olika skogsskötselmetoder har analyserats för att kvantifiera de flöden och den lagring av kol som sker i biomassa, mark och trĂ€produkter. Intensifierat skogsbruk gav mindre utslĂ€pp av CO2 per ha skogsmark, eftersom potentialen ökade för att ersĂ€tta fossila brĂ€nslen och energiintensiva material. Denna substitutionseffekt kompenserade mer Ă€n vĂ€l för den ökning i energianvĂ€ndning och de utslĂ€pp av CO2 som den intensivare skogsskötseln medförde, inklusive för den minskning av lagrat kol i marken som uttaget av skogsrester medförde. Lagring av kol i skogar och trĂ€produkter kan vara intressant i ett kort tidsperspektiv, men under en byggnads livscykel och ett skogsbestĂ„nds rotationsperiod har den liten betydelse. I lĂ€ngden uppnĂ„s den största minskningen av CO2-utslĂ€pp genom en aktiv och hĂ„llbar skogsskötsel med uttag av skogsresurser för anvĂ€ndning till trĂ€produkter och energi. I denna avhandling studerades ocksĂ„ hur anvĂ€ndningen av trĂ€produkter pĂ„verkas av energi- och miljöskatter. En analys av energi- och skattekostnadernas effekt pĂ„ konkurrenskraften för trĂ€material visade att energikostnaden Ă€r lĂ€gre för trĂ€material Ă€n för andra vanliga byggmaterial. Energi- och koldioxidskatter pĂ„verkar trĂ€produkter i mindre utstrĂ€ckning Ă€n produkter i andra material. De ekonomiska fördelarna av att anvĂ€nda biomassa som ersĂ€ttning för fossila brĂ€nslen ökar ocksĂ„ med höjda skatter. Konkurrensfördelarna för trĂ€konstruktioner ökar dĂ€rför generellt i takt med högre skatt pĂ„ fossila brĂ€nslen och CO2-utslĂ€pp. En analys av förĂ€dlingsvĂ€rdet hos skogsprodukter visade pĂ„ en större vĂ€rdeökning vid produktion av byggnadsmaterial Ă€n för andra biomassebaserade produkter. Samproduktion av flera trĂ€produkter ökade det totala vĂ€rdet hos biomassan per skogsareal. Resultaten visade att produktion av trĂ€baserade byggnadsmaterial fĂ„r ekonomiska fördelar av klimatpolitiska Ă„tgĂ€rder och att sĂ„dan produktion har ett högt förĂ€dlingsvĂ€rde för industrierna i trĂ€branschen

    Life-Cycle Energy and Carbon Implications of Wood-Based Products and Construction

    No full text
    Forests can be an important element of an overall strategy to limit the atmospheric concentration of carbon dioxide (CO2) that contributes to climate change. As an integral part of the global carbon cycle, forests remove CO2 from the atmosphere as they grow, and accumulate carbon in tree biomass. Using wood products made from sustainably managed forests can reduce net CO2 emission by substituting in place of fossil fuels and energy-intensive materials. In this thesis the mechanisms by which wood product substitution can affect energy and carbon balances are studied. These include: the energy needed to manufacture wood products compared with alternative materials; the avoidance of industrial process carbon emission from e.g. cement manufacture; the use of wood by-products as biofuel to replace fossil fuels; and the physical storage of carbon in forests and wood materials. A methodological framework is first developed by integrating knowledge from the fields of forestry, industry, construction, and energy. A life cycle perspective is employed encompassing the entire product chain from natural resource acquisition to material disposal or reuse. Analytical challenges that are addressed include the functional unit of comparison, the fossil reference system, land use issues of wood vs. non-wood materials, and the diverse phases of the product life cycle. The methodology is then applied to two multi-storey wood-framed buildings in Sweden and Finland, compared with two functionally equivalent buildings with reinforced concrete structural frames. The results show that less primary energy is needed to produce the wood-framed buildings than the concrete-frame buildings. CO2 emission is significantly lower for the wood-frame buildings, due to reductions in both fossil fuel use and cement calcination process emission. The most important single factor affecting the energy and carbon balances is the use of biomass by-products from the wood product chain as biofuel to replace fossil fuels. Over the life cycle of the wood-framed buildings, the energy of biomass residues from forest operations, wood processing, construction and demolition is greater than the energy inputs to produce the materials in the buildings. Realisation of this benefit is facilitated by integrating and optimising the biomass and energy flows within the forestry, industrial, construction, energy, and waste management sectors. Different forest management regimes are studied in an integrated carbon analysis to quantify the carbon flows and stocks associated with tree biomass, soils, and forest products. Intensified forest management that produces greater quantities of biomass leads to net CO2 emission benefits by augmenting the potential to substitute for fossil fuels and non-wood materials. The increased energy use and carbon emission required for the more intensive forest management, as well as the slight reduction in soil carbon accumulation due to greater removal of forest residues, are more than compensated for by the emission reduction due to product substitution. Carbon stock changes in forests and wood materials can be temporarily significant, but over the building life cycle and forest rotation period the stock change becomes insignificant. In the long term, the active and sustainable management of forests, including their use as a source for wood products and biofuels, allows the greatest potential for reducing net CO2 emission. Implementation issues related to the wider use of wood-based materials to reduce energy use and carbon emission are also explored. An analysis of the effects of energy and taxation costs on the economic competitiveness of materials shows that the cost of energy for material processing, as a percentage of the total cost of finished material, is lower for wood products than for other common non-wood building materials. Energy and carbon taxation affects the cost of wood products less than other materials. The economic benefit of using biomass residues to substitute for fossil fuels also increases as tax rates increase. In general, higher taxation of fossil fuels and carbon emission increases the economic competitiveness of wood construction. An analysis of added value in forest product industries shows that greater economic value is added in the production of structural building materials than in other uses of forest biomass. Co-production of multiple wood-based products increases the total value that is added to the biomass produced on an area of forest land. The results show that production of wood-based building material is favoured economically by climate change mitigation policies, and creates high added value within forest product industries.Skogsresurser kan utgöra en viktig del i en strategi för att begrĂ€nsa koncentrationen av koldioxid (CO2) i atmosfĂ€ren och dĂ€rmed begrĂ€nsa klimatförĂ€ndringarna. Skog tar upp CO2 frĂ„n atmosfĂ€ren nĂ€r den vĂ€xer och kolet lagras i trĂ€dens biomassa. TrĂ€dprodukter frĂ„n hĂ„llbart brukade skogar kan minska nettoutslĂ€ppen av CO2 genom att de kan ersĂ€tta fossilt brĂ€nsle och energiintensiva material. I denna avhandling studeras faktorer som pĂ„verkar energi- och kolbalanser nĂ€r trĂ€produkter ersĂ€tter alternativa produkter. Signifikanta faktorer Ă€r den energi som behövs för att framstĂ€lla trĂ€produkter jĂ€mfört med alternativa produkter, utslĂ€pp av CO2 frĂ„n industriella processer som vid cementproduktion, ersĂ€ttning av fossilt brĂ€nsle med trĂ€rester samt lagring av kol i skog och trĂ€produkter. En metodik har utvecklats för att studera dessa faktorer genom att integrera Ă€mneskunskaper frĂ„n byggkonstruktion, energi, industri och det skogliga omrĂ„det. Den bygger pĂ„ ett livscykelperspektiv och innefattar hela material- och produktkedjor frĂ„n naturresurs till avfall eller Ă„teranvĂ€ndning av material eller produkter. De metodikfrĂ„gor som varit i fokus Ă€r den funktionella enheten för jĂ€mförelser, det fossila referenssystemet, utnyttjande av skogmark vid produktion av trĂ€produkter samt produktens olika faser under en livscykel. Metodiken har sedan anvĂ€nts för att jĂ€mföra ett svenskt och ett finskt flervĂ„ningshus i trĂ€ med tvĂ„ funktionellt likvĂ€rdiga hus med betongstomme. Resultaten visade att det behövs mindre primĂ€renergi för att tillverka trĂ€huset Ă€n betonghuset. Energin som kan utvinnas frĂ„n biprodukter under en trĂ€byggnads livscykel – frĂ„n skogsskötsel, förĂ€dling, konstruktion och rivning – Ă€r större Ă€n den energi som krĂ€vs för att tillverka byggnadsmaterialet i byggnaden. NettoutslĂ€ppen av CO2 frĂ„n bĂ„de fossil primĂ€renergi och cementkalcinering Ă€r ocksĂ„ vĂ€sentligt lĂ€gre för trĂ€huset, men anvĂ€ndningen av biprodukter frĂ„n skogsavverkning, trĂ€förĂ€dlingskedjan och rivningsvirke för att ersĂ€tta fossilt brĂ€nsle har störst pĂ„verkan pĂ„ kolbalansen. För att fullt ut tillgodogöra sig biprodukters potentiella fördelar krĂ€vs att de olika sektorerna för skogsbruk, industri, konstruktion, energi och avfallshantering integreras och optimeras med avseende pĂ„ energi- och materialflöden. Olika skogsskötselmetoder har analyserats för att kvantifiera de flöden och den lagring av kol som sker i biomassa, mark och trĂ€produkter. Intensifierat skogsbruk gav mindre utslĂ€pp av CO2 per ha skogsmark, eftersom potentialen ökade för att ersĂ€tta fossila brĂ€nslen och energiintensiva material. Denna substitutionseffekt kompenserade mer Ă€n vĂ€l för den ökning i energianvĂ€ndning och de utslĂ€pp av CO2 som den intensivare skogsskötseln medförde, inklusive för den minskning av lagrat kol i marken som uttaget av skogsrester medförde. Lagring av kol i skogar och trĂ€produkter kan vara intressant i ett kort tidsperspektiv, men under en byggnads livscykel och ett skogsbestĂ„nds rotationsperiod har den liten betydelse. I lĂ€ngden uppnĂ„s den största minskningen av CO2-utslĂ€pp genom en aktiv och hĂ„llbar skogsskötsel med uttag av skogsresurser för anvĂ€ndning till trĂ€produkter och energi. I denna avhandling studerades ocksĂ„ hur anvĂ€ndningen av trĂ€produkter pĂ„verkas av energi- och miljöskatter. En analys av energi- och skattekostnadernas effekt pĂ„ konkurrenskraften för trĂ€material visade att energikostnaden Ă€r lĂ€gre för trĂ€material Ă€n för andra vanliga byggmaterial. Energi- och koldioxidskatter pĂ„verkar trĂ€produkter i mindre utstrĂ€ckning Ă€n produkter i andra material. De ekonomiska fördelarna av att anvĂ€nda biomassa som ersĂ€ttning för fossila brĂ€nslen ökar ocksĂ„ med höjda skatter. Konkurrensfördelarna för trĂ€konstruktioner ökar dĂ€rför generellt i takt med högre skatt pĂ„ fossila brĂ€nslen och CO2-utslĂ€pp. En analys av förĂ€dlingsvĂ€rdet hos skogsprodukter visade pĂ„ en större vĂ€rdeökning vid produktion av byggnadsmaterial Ă€n för andra biomassebaserade produkter. Samproduktion av flera trĂ€produkter ökade det totala vĂ€rdet hos biomassan per skogsareal. Resultaten visade att produktion av trĂ€baserade byggnadsmaterial fĂ„r ekonomiska fördelar av klimatpolitiska Ă„tgĂ€rder och att sĂ„dan produktion har ett högt förĂ€dlingsvĂ€rde för industrierna i trĂ€branschen

    A Framework for Environmental Assessment of CO2 Capture and Storage Systems

    No full text

    The role of Life Cycle Assessment in identifying and reducing environmental impacts of CCS

    No full text
    Life Cycle Assessment (LCA) should be used to assist carbon capture and sequestration (CCS) planners to reduce greenhouse gas (GHG) emissions and avoid unintended environmental trade-offs. LCA is an analytical framework for determining environmental impacts resulting from processes, products, and services. All life cycle stages are evaluated including raw material sourcing, processing, operation, maintenance, and component end-of-life, as well as intermediate stages such as transportation. In recent years a growing number of LCA studies have analyzed CCS systems. We reviewed 50+ LCA studies, and selected 11 studies that compared the environmental performance of 23 electric power plants with and without CCS. Here we summarize and interpret the findings of these studies. Regarding overall climate mitigation effectiveness of CCS, we distinguish between the capture percentage of carbon in the fuels, the net carbon dioxide (CO2) emission reduction, and the net GHG emission reduction. We also identify trade-offs between the climate benefits and the potential increased non-climate impacts of CCS. Emissions of non-CO2 flue gases such as NOx may increase due to the greater throughput of fuel, and toxicity issues may arise due to the use of monoethanolamine (MEA) capture solvent, resulting in ecological and human health impacts. We discuss areas where improvements in LCA data or methods are needed. The decision to implement CCS should be based on knowledge of the overall environmental impacts of the technologies, not just their carbon capture effectiveness. LCA will be an important tool in providing that knowledge
    corecore