13 research outputs found

    Experimental Coxiella burnetii infection in non-pregnant goats and the effect of breeding

    Get PDF
    Q fever is a zoonosis caused by the intracellular bacterium Coxiella burnetii. In Europe, small ruminants are the main source of human Q fever. Small ruminant herds can be infectious during several lambing seasons. However, it is not clear how infection is maintained in a herd and what role non-pregnant animals play in the transmission of C. burnetii. We therefore inoculated nulliparous goats with C. burnetii, isolated from the outbreak of Q fever in the Netherlands, to gain a better understanding of the role of non-pregnant goats. Seroconversion and excretion of C. burnetii were monitored after inoculation. To study the effect of breeding on the excretion of C. burnetii, the goats were naturally bred and monitored during gestation and after lambing. Our results indicate that C. burnetii infection prior to breeding did not result in infection of the placenta nor did it affect the gestation length or the number of kids born. However, one of the ten does did excrete C. burnetii in the colostrum post-partum and the bacterium was detected in the mammary gland and associated lymph nodes at necropsy. This result indicates that non-pregnant goats might play a role in maintaining Q fever in a goat herd as persistent carriers of infection

    Experimental Coxiella burnetii infection in non-pregnant goats and the effect of breeding

    Get PDF
    Q fever is a zoonosis caused by the intracellular bacterium Coxiella burnetii. In Europe, small ruminants are the main source of human Q fever. Small ruminant herds can be infectious during several lambing seasons. However, it is not clear how infection is maintained in a herd and what role non-pregnant animals play in the transmission of C. burnetii. We therefore inoculated nulliparous goats with C. burnetii, isolated from the outbreak of Q fever in the Netherlands, to gain a better understanding of the role of non-pregnant goats. Seroconversion and excretion of C. burnetii were monitored after inoculation. To study the effect of breeding on the excretion of C. burnetii, the goats were naturally bred and monitored during gestation and after lambing. Our results indicate that C. burnetii infection prior to breeding did not result in infection of the placenta nor did it affect the gestation length or the number of kids born. However, one of the ten does did excrete C. burnetii in the colostrum post-partum and the bacterium was detected in the mammary gland and associated lymph nodes at necropsy. This result indicates that non-pregnant goats might play a role in maintaining Q fever in a goat herd as persistent carriers of infection.</p

    Genome plasticity and polymorphisms in critical genes correlate with increased virulence of Dutch outbreak-related Coxiella burnetii strains

    No full text
    Coxiella burnetii is an obligate intracellular bacterium and the etiological agent of Q fever. During 2007-2010 the largest Q fever outbreak ever reported occurred in The Netherlands. It is anticipated that strains from this outbreak demonstrated an increased zoonotic potential as more than 40,000 individuals were assumed to be infected. The acquisition of novel genetic factors by these C. burnetii outbreak strains, such as virulence-related genes, has frequently been proposed and discussed, but is not proved yet. In the present study, the whole genome sequence of several Dutch strains (CbNL01 and CbNL12 genotypes), a few additionally selected strains from different geographical locations and publicly available genome sequences were used for a comparative bioinformatics approach. The study focuses on the identification of specific genetic differences in the outbreak related CbNL01 strains compared to other C. burnetii strains. In this approach we investigated the phylogenetic relationship and genomic aspects of virulence and host-specificity. Phylogenetic clustering of whole genome sequences showed a genotype-specific clustering that correlated with the clustering observed usingMultiple Locus Variable-number TandemRepeat Analysis (MLVA). Ortholog analysis on predicted genes and single nucleotide polymorphism (SNP) analysis of complete genome sequences demonstrated the presence of genotype-specific gene contents and SNP variations in C. burnetii strains. It also demonstrated that the currently used MLVA genotyping methods are highly discriminatory for the investigated outbreak strains. In the fully reconstructed genome sequence of the Dutch outbreak NL3262 strain of the CbNL01 genotype, a relatively large number of transposon-linked genes were identified as compared to the other published complete genome sequences of C. burnetii. Additionally, large numbers of SNPs in its membrane proteins and predicted virulence-associated genes were identified in all Dutch outbreak strains compared to the NM reference strain and other strains of the CbNL12 genotype. The presence of large numbers of transposable elements and mutated genes, thereof most likely resulted in high level of genome rearrangements and genotype-specific pathogenicity of outbreak strains. Thus, the epidemic potential of Dutch outbreak strains could be linked to increased genome plasticity and mutations in critical genes involved in virulence and the evasion of the host immune system.</p

    Experimental Coxiella burnetii infection in non-pregnant goats and the effect of breeding

    No full text
    Q fever is a zoonosis caused by the intracellular bacterium Coxiella burnetii. In Europe, small ruminants are the main source of human Q fever. Small ruminant herds can be infectious during several lambing seasons. However, it is not clear how infection is maintained in a herd and what role non-pregnant animals play in the transmission of C. burnetii. We therefore inoculated nulliparous goats with C. burnetii, isolated from the outbreak of Q fever in the Netherlands, to gain a better understanding of the role of non-pregnant goats. Seroconversion and excretion of C. burnetii were monitored after inoculation. To study the effect of breeding on the excretion of C. burnetii, the goats were naturally bred and monitored during gestation and after lambing. Our results indicate that C. burnetii infection prior to breeding did not result in infection of the placenta nor did it affect the gestation length or the number of kids born. However, one of the ten does did excrete C. burnetii in the colostrum post-partum and the bacterium was detected in the mammary gland and associated lymph nodes at necropsy. This result indicates that non-pregnant goats might play a role in maintaining Q fever in a goat herd as persistent carriers of infection

    Brucella suis infection in dog fed raw meat, the Netherlands

    No full text
    A Brucella suis biovar 1 infection was diagnosed in a dog without typical exposure risks, but the dog had been fed a raw meat–based diet (hare carcasses imported from Argen-tina). Track and trace investigations revealed that the most likely source of infection was the dog’s raw meat diet

    A cross sectional study on Dutch layer farms to investigate the prevalence and potential risk factors for different Chlamydia species

    No full text
    In poultry several Chlamydia species have been detected, but Chlamydia psittaci and Chlamydia gallinacea appear to be most prevalent and important. Chlamydia psittaci is a well-known zoonosis and is considered to be a pathogen of poultry. Chlamydia gallinacea has been described more recently. Its avian pathogenicity and zoonotic potential have to be further elucidated. Within the Netherlands no data were available on the presence of Chlamydia on poultry farms. As part of a surveillance programme for zoonotic pathogens in farm animals, we investigated pooled faecal samples from 151 randomly selected layer farms. On a voluntary base, 69 farmers, family members or farm workers from these 151 farms submitted a throat swab. All samples were tested with a generic 23S Chlamydiaceae PCR followed by a species specific PCR for C. avium, C. gallinacea and C. psittaci. C. avium and psittaci DNA was not detected at any of the farms. At 71 farms the positive result could be confirmed as C. gallinacea. Variables significantly associated with the presence of C. gallinacea in a final multivariable model were ‘age of hens,’ ‘use of bedding material’ and ‘the presence of horses.’ The presence of C. gallinacea was associated with neither clinical signs, varying from respiratory symptoms, nasal and ocular discharges to diarrhoea, nor with a higher mortality rate the day before the visit. All throat swabs from farmers, family members or farm workers tested negative for Chlamydia DNA, giving no further indication for possible bird-to-human (or human-to-bird) transmission

    Transboundary Spread of Brucella canis through Import of Infected Dogs, the Netherlands, November 2016–December 2018

    Get PDF
    Brucella canis had not been isolated in the Netherlands until November 2016, when it was isolated from a dog imported from Romania. Including this case, 16 suspected cases were notified to the authorities during the following 25 months. Of these 16 dogs, 10 were seropositive; tracking investigations found another 8 seropositive littermates. All seropositive animals were rescue dogs imported from Eastern Europe. B. canis was cultured from urine, blood, and other specimens collected from the dogs. Genotyping of isolates revealed clustering by litter and country. Isolating B. canis in urine indicates that shedding should be considered when assessing the risk for zoonotic transmission. This case series proves introduction of B. canis into a country to which it is not endemic through import of infected dogs from B. canis–endemic areas, posing a threat to the naive autochthonous dog population and humans
    corecore