382 research outputs found

    The Diversity of Type Ia Supernovae from Broken Symmetries

    Full text link
    Type Ia supernovae result when carbon-oxygen white dwarfs in binary systems accrete mass from companion stars, reach a critical mass, and explode. The near uniformity of their light curves makes these supernovae good standard candles for measuring cosmic expansion, but a correction must be applied to account for the fact that the brighter supernovae have broader light curves. One-dimensional modelling, with a certain choice of parameters, can reproduce this general trend in the width-luminosity relation, but the processes of ignition and detonation have recently been shown to be intrinsically asymmetric. Here we report on multi-dimensional modelling of the explosion physics and radiative transfer that reveals that the breaking of spherical symmetry is a critical factor in determining both the width luminosity relation and the observed scatter about it. The deviation from sphericity can also explain the finite polarization detected in the light from some supernovae. The slope and normalization of the width-luminosity relation has a weak dependence on certain properties of the white dwarf progenitor, in particular the trace abundances of elements other than carbon and oxygen. Failing to correct for this effect could lead to systematic overestimates of up to 2% in the distance to remote supernovae.Comment: Accepted to Natur

    Off-center ignition in type Ia supernova: I. Initial evolution and implications for delayed detonation

    Get PDF
    The explosion of a carbon-oxygen white dwarf as a Type Ia supernova is known to be sensitive to the manner in which the burning is ignited. Studies of the pre-supernova evolution suggest asymmetric, off-center ignition, and here we explore its consequences in two- and three-dimensional simulations. Compared with centrally ignited models, one-sided ignitions initially burn less and release less energy. For the distributions of ignition points studied, ignition within two hemispheres typically leads to the unbinding of the white dwarf, while ignition within a small fraction of one hemisphere does not. We also examine the spreading of the blast over the surface of the white dwarf that occurs as the first plumes of burning erupt from the star. In particular, our studies test whether the collision of strong compressional waves can trigger a detonation on the far side of the star as has been suggested by Plewa et al. (2004). The maximum temperature reached in these collisions is sensitive to how much burning and expansion has already gone on, and to the dimensionality of the calculation. Though detonations are sometimes observed in 2D models, none ever happens in the corresponding 3D calculations. Collisions between the expansion fronts of multiple bubbles also seem, in the usual case, unable to ignite a detonation. "Gravitationally confined detonation" is therefore not a robust mechanism for the explosion. Detonation may still be possible in these models however, either following a pulsation or by spontaneous detonation if the turbulent energy is high enough.Comment: 13 pages, 10 figures (resolution of some figures reduced to comply with astro-ph file size restriction); submitted to the Astrophysical Journal on 8/3/200

    Modeling the Diversity of Type Ia Supernova Explosions

    Full text link
    Type Ia supernovae (SNe Ia) are a prime tool in observational cosmology. A relation between their peak luminosities and the shapes of their light curves allows to infer their intrinsic luminosities and to use them as distance indicators. This relation has been established empirically. However, a theoretical understanding is necessary in order to get a handle on the systematics in SN Ia cosmology. Here, a model reproducing the observed diversity of normal SNe Ia is presented. The challenge in the numerical implementation arises from the vast range of scales involved in the physical mechanism. Simulating the supernova on scales of the exploding white dwarf requires specific models of the microphysics involved in the thermonuclear combustion process. Such techniques are discussed and results of simulations are presented.Comment: 6 pages, ASTRONUM-2009 "Numerical Modeling of Space Plasma Flows", Chamonix, France, July 2009, to appear in ASP Conf. Pro

    Excess low energy photon pairs from pion annihilation at the chiral phase transition

    Get PDF
    The photon pair production by pion annihilation in a hot and dense medium at the chiral phase transition is investigated within a chiral quark model. As a direct consequence of this transition the σ\sigma meson appears as a bound state in the domain of temperatures and chemical potentials where the condition Mσ(T,μ)2Mπ(T,μ)M_\sigma(T,\mu) \approx 2 M_\pi(T,\mu) is fulfilled. This effect results in a strong enhancement of the cross section for the pion annihilation process 2π2γ2 \pi \to 2 \gamma compared with the vacuum case. The calculation of the photon pair production rate as function of the invariant mass shows a strong enhancement and narrowing of the σ\sigma meson resonance at threshold due to chiral symmetry restoration.Comment: 15 pages, LaTeX, 6 figures, Phys. Lett.

    Nucleation and cluster formation in low-density nucleonic matter: A mechanism for ternary fission

    Get PDF
    Ternary fission yields in the reaction 241Pu(nth,f) are calculated using a new model which assumes a nucleation-time moderated chemical equilibrium in the low density matter which constitutes the neck region of the scissioning system. The temperature, density, proton fraction and fission time required to fit the experimental data are derived and discussed. A reasonably good fit to the experimental data is obtained. This model provides a natural explanation for the observed yields of heavier isotopes relative to those of the lighter isotopes, the observation of low proton yields relative to 2H and 3H yields and the non-observation of 3He, all features which are shared by similar thermal neutron induced and spontaneous fissioning systems.Comment: 6 pages, 3 figure

    The rotation of surviving companion stars after type Ia supernova explosions in the WD+MS scenario

    Full text link
    In the SD scenario of SNe Ia the companion survives the SN explosion and thus should be visible near the center of the SN remnant and may show some unusual features. A promising approach to test progenitor models of SNe Ia is to search for the companion in SNRs. Here we present the results of 3D hydrodynamics simulations of the interaction between the SN Ia blast wave and a MS companion taking into consideration its orbital motion and spin. The primary goal of this work is to investigate the rotation of surviving companions after SN Ia explosions in the WD+MS scenario. We use Eggleton's code including the optically thick accretion wind model to obtain realistic models of companions. The impact of the SN blast wave on these companions is followed in 3D hydrodynamic simulations employing the SPH code GADGET3. We find that the rotation of the companion does not significantly affect the amount of stripped mass and the kick velocity caused by the SN impact. However, in our simulations, the rotational velocity of the companion is significantly reduced to about 14% to 32% of its pre-explosion value due to the expansion of the companion and the fact that 55%-89% of the initial angular momentum is carried away by the stripped matter. Compared with the observed rotational velocity of the presumed companion star of Tycho's SN, Tycho G, of 6 km/s the final rotational velocity we obtain is still higher by at least a factor of two. Whether this difference is significant, and may cast doubts on the suggestion that Tycho G is the companion of SN 1572, has to be investigated in future studies. Based on binary population synthesis results we present, for the first time, the expected distribution of rotational velocities of companions after the explosion which may provide useful information for the identification of the surviving companion in observational searches in other historical SNRs.Comment: 13 pages, 15 figures, accepted for publication by Astronomy and Astrophysic

    Personality science, resilience, and posttraumatic growth

    Get PDF
    PASTOR represents an innovative development in the study of resilience. This commentary highlights how PASTOR can help both clarify critical questions in and benefit from engaging with new research in personality science on behavioral flexibility across situations in addition to stability over time, and also clarify the relationship between resilience and posttraumatic growth

    Psychosocial stress increases testosterone in patients with borderline personality disorder, post-traumatic stress disorder and healthy participants

    Get PDF
    Background: The gonadal hormone testosterone not only regulates sexual behavior but is also involved in social behavior and cognition in both sexes. Changes in testosterone secretion in response to stress have been reported. In addition, stress associated mental disorders such as borderline personality disorder (BPD) and posttraumatic stress disorder (PTSD) are characterized by alterations in basal testosterone metabolism. However, testosterone changes to stress have not been investigated in mental disorders such as BPD and PTSD so far. Methods: In the study described, we investigated testosterone reactivity to an acute psychosocial stressor, the Trier Social Stress Test (TSST). Our sample consisted of young adult women with BPD (n = 28), PTSD (n = 22) or both disorders (n = 22), and healthy control (n = 51). Based on previous studies on basal testosterone secretion in these disorders, we expected the stress-associated testosterone reactivity to be higher in the BPD group and lower in the PTSD group, when compared to the healthy control group. Results: The study could demonstrate an increase in testosterone after acute stress exposure across all groups and independent of BPD or PTSD status. Different possible explanations for the absence of a group effect are discussed. Conclusions: From the results of this study, we conclude that stress-related changes in testosterone release are not affected by BPD or PTSD status in a female patient population. This study expands the knowledge about changes in gonadal hormones and stress reactivity in these disorders
    corecore