8 research outputs found

    PDRs4All III: JWST's NIR spectroscopic view of the Orion Bar

    Full text link
    (Abridged) We investigate the impact of radiative feedback from massive stars on their natal cloud and focus on the transition from the HII region to the atomic PDR (crossing the ionisation front (IF)), and the subsequent transition to the molecular PDR (crossing the dissociation front (DF)). We use high-resolution near-IR integral field spectroscopic data from NIRSpec on JWST to observe the Orion Bar PDR as part of the PDRs4All JWST Early Release Science Program. The NIRSpec data reveal a forest of lines including, but not limited to, HeI, HI, and CI recombination lines, ionic lines, OI and NI fluorescence lines, Aromatic Infrared Bands (AIBs including aromatic CH, aliphatic CH, and their CD counterparts), CO2 ice, pure rotational and ro-vibrational lines from H2, and ro-vibrational lines HD, CO, and CH+, most of them detected for the first time towards a PDR. Their spatial distribution resolves the H and He ionisation structure in the Huygens region, gives insight into the geometry of the Bar, and confirms the large-scale stratification of PDRs. We observe numerous smaller scale structures whose typical size decreases with distance from Ori C and IR lines from CI, if solely arising from radiative recombination and cascade, reveal very high gas temperatures consistent with the hot irradiated surface of small-scale dense clumps deep inside the PDR. The H2 lines reveal multiple, prominent filaments which exhibit different characteristics. This leaves the impression of a "terraced" transition from the predominantly atomic surface region to the CO-rich molecular zone deeper in. This study showcases the discovery space created by JWST to further our understanding of the impact radiation from young stars has on their natal molecular cloud and proto-planetary disk, which touches on star- and planet formation as well as galaxy evolution.Comment: 52 pages, 30 figures, submitted to A&

    Velocity profiles of [C-II], [C-I], CO, and [O-I] and physical conditions in four star-forming regions in the Large Magellanic Cloud

    No full text
    Aims. The aim of our study is to investigate the physical properties of the star-forming interstellar medium (ISM) in the Large Magellanic Cloud (LMC) by separating the origin of the emission lines spatially and spectrally. The LMC provides a unique local template to bridge studies in the Galaxy and high redshift galaxies because of its low metallicity and proximity, enabling us to study the detailed physics of the ISM in spatially resolved individual star-forming regions. Following Okada et al. (Okada, Y., Requena-Torres, M. A., Gusten, R., et al. 2015, A&A, 580, A54), we investigate different phases of the ISM traced by carbon-bearing species in four star-forming regions in the LMC, and model the physical properties using the KOSMA-tau PDR model. Methods. We mapped 3-13 arcmin(2) areas in 30 Dor, N158, N160, and N159 along the molecular ridge of the LMC in [C II] 158 mu m with GREAT on board SOFIA. We also observed the same area with CO(2-1) to (6-5), (CO)-C-13(2-1) and (3-2), [C I] P-3(1)-P-3(0) and P-3(2)-P-3(1) with APEX. For selected positions in N159 and 30 Dor, we observed [O I] 145 mu m and [O I] 63 mu m with upGREAT. All spectra are velocity resolved. Results. In all four star-forming regions, the line profiles of CO, (CO)-C-13, and [C I] emission are similar, being reproduced by a combination of Gaussian profiles defined by CO(3-2), whereas [C II] typically shows wider line profiles or an additional velocity component. At several positions in N159 and 30 Dor, we observed the velocity-resolved [O I] 145 and 63 mu m lines for the first time. At some positions, the [O I] 145 and 63 mu m lines for the first time. At some positions, the [O I line profiles match those of CO, at other positions they are more similar to the [C II] profiles. We interpret the different line profiles of CO, [C II] and [O I] as contributions from spatially separated clouds and/or clouds in different physical phases, which give different line ratios depending on their physical properties. We modeled the emission from the CO, [C I], [C II], and [O I] lines and the far-infrared continuum emission using the latest KOSMA-tau PDR model, which treats the dust-related physics consistently and computes the dust continuum SED together with the line emission of the chemical species. We find that the line and continuum emissions are not well-reproduced by a single clump ensemble. Toward the CO peak at N159 W, we propose a scenario that the CO, [C II], and [O I] 63 mu m emission are weaker than expected because of mutual shielding among clumps

    Molecular line tracers of high-mass star forming regions

    No full text
    High-mass stars influence their environment in different ways including feedback via their FUV radiation. The penetration of FUV photons into molecular clouds creates Photon Dominated Regions (PDRs) with different chemical layers where the mainly ionized medium changes into mainly molecular. Different chemical layers in PDRs are traced by different species observable at sub-mm and Far Infrared wavelengths. In this poster we present results from two molecular line surveys. One of them is the James Clerk Maxwell Telescope (JCMT) Spectral Legacy Survey (SLS) toward the luminous (>10^7 L_Sun), massive (~10^6 M_Sun), and distant (11.4 kpc) star-forming region W49A. The SLS images a 2x2 arcminute field toward W49A in the 330-373 GHz frequency range. The detected molecular lines reveal a complex chemistry and the importance of FUV-irradiation in the heating and chemistry of the region. The other line survey presented in the poster is part of the HEXOS (Herschel observations of EXtra-Ordinary Sources, PI: E. Bergin) key program using the Herschel Space Observatory and is toward the nearby (~420 pc) prototypical edge-on Orion Bar PDR and the dense molecular condensation Orion S. Reactive ions, such as CH+, SH+, and CO+, detected as a part of this line survey trace the warm (~500-1000 K) surface region of PDRs. Spectrally resolved HIFI and spectrally unresolved PACS spectra give constraints on the chemistry and excitation of reactive ions in these regions

    Safety and efficacy of pomalidomide plus low-dose dexamethasone in STRATUS (MM-010): a phase 3b study in refractory multiple myeloma

    No full text
    Patients with relapsed and/or refractory multiple myeloma (RRMM) have poor prognosis. The STRATUS study assessed safety and efficacy of pomalidomide plus low-dose dexamethasone in the largest cohort to date of patients with RRMM. Patients who failed treatment with bortezomib and lenalidomide and had adequate prior alkylator therapy were eligible. Pomalidomide 4 mg was given on days 1-21 of 28-day cycles with low-dose dexamethasone 40 mg (20 mg for patients aged >75 years) on days 1, 8, 15, and 22 until progressive disease or unacceptable toxicity. Safety was the primary end point; secondary end points included overall response rate (ORR), duration of response (DOR), progression-free survival (PFS), and overall survival (OS). Among 682 patients enrolled, median age was 66 years, and median time since diagnosis was 5.3 years. Median number of prior regimens was 5. Most patients were refractory to both lenalidomide and bortezomib (80.2%). Median follow-up was 16.8 months; median duration of treatment was 4.9 months. Most frequent grade 3/4 treatment-emergent adverse events were hematologic (neutropenia [49.7%], anemia [33.0%], and thrombocytopenia [24.1%]). Most common grade 3/4 nonhematologic toxicities were pneumonia (10.9%) and fatigue (5.9%). Grade 3/4 venous thromboembolism and peripheral neuropathy were rare (1.6% each). The ORR was 32.6%, and the median DOR was 7.4 months. Median PFS and OS were 4.6 months and 11.9 months, respectively. We present the largest trial to date evaluating pomalidomide plus low-dose dexamethasone in patients with RRMM, further confirming that this regimen offers clinically meaningful benefit and is generally well tolerated. www.Clinicaltrials.gov identifier NCT01712789.status: publishe

    PDRs4All III: JWST's NIR spectroscopic view of the Orion Bar

    No full text
    International audience(Abridged) We investigate the impact of radiative feedback from massive stars on their natal cloud and focus on the transition from the HII region to the atomic PDR (crossing the ionisation front (IF)), and the subsequent transition to the molecular PDR (crossing the dissociation front (DF)). We use high-resolution near-IR integral field spectroscopic data from NIRSpec on JWST to observe the Orion Bar PDR as part of the PDRs4All JWST Early Release Science Program. The NIRSpec data reveal a forest of lines including, but not limited to, HeI, HI, and CI recombination lines, ionic lines, OI and NI fluorescence lines, Aromatic Infrared Bands (AIBs including aromatic CH, aliphatic CH, and their CD counterparts), CO2 ice, pure rotational and ro-vibrational lines from H2, and ro-vibrational lines HD, CO, and CH+, most of them detected for the first time towards a PDR. Their spatial distribution resolves the H and He ionisation structure in the Huygens region, gives insight into the geometry of the Bar, and confirms the large-scale stratification of PDRs. We observe numerous smaller scale structures whose typical size decreases with distance from Ori C and IR lines from CI, if solely arising from radiative recombination and cascade, reveal very high gas temperatures consistent with the hot irradiated surface of small-scale dense clumps deep inside the PDR. The H2 lines reveal multiple, prominent filaments which exhibit different characteristics. This leaves the impression of a "terraced" transition from the predominantly atomic surface region to the CO-rich molecular zone deeper in. This study showcases the discovery space created by JWST to further our understanding of the impact radiation from young stars has on their natal molecular cloud and proto-planetary disk, which touches on star- and planet formation as well as galaxy evolution
    corecore