755 research outputs found

    Radial turbine cooling

    Get PDF
    Radial turbines have been used extensively in many applications including small ground based electrical power generators, automotive engine turbochargers and aircraft auxiliary power units. In all of these applications the turbine inlet temperature is limited to a value commensurate with the material strength limitations and life requirements of uncooled metal rotors. To take advantage of all the benefits that higher temperatures offer, such as increased turbine specific power output or higher cycle thermal efficiency, requires improved high temperature materials and/or blade cooling. Extensive research is on-going to advance the material properties of high temperature superalloys as well as composite materials including ceramics. The use of ceramics with their high temperature potential and low cost is particularly appealing for radial turbines. However until these programs reach fruition the only way to make significant step increases beyond the present material temperature barriers is to cool the radial blading

    Phytoplankton assemblage characteristics in recurrently fluctuating environments

    Get PDF
    Annual variations in biogeochemical and physical processes can lead to nutrient variability and seasonal patterns in phytoplankton productivity and assemblage structure. In many coastal systems river inflow and water exchange with the ocean varies seasonally, and alternating periods can arise where the nutrient most limiting to phytoplankton growth switches. Transitions between these alternating periods can be sudden or gradual and this depends on human activities, such as reservoir construction and interbasin water transfers. How such activities might influence phytoplankton assemblages is largely unknown. Here, we employed a multispecies, multi-nutrient model to explore how nutrient loading switching mode might affect characteristics of phytoplankton assemblages. The model is based on the Monod-relationship, predicting an instantaneous growth rate from ambient inorganic nutrient concentrations whereas the limiting nutrient at any given time was determined by Liebig’s Law of the Minimum. Our simulated phytoplankton assemblages self-organized from species rich pools over a 15-year period, and only the surviving species were considered as assemblage members. Using the model, we explored the interactive effects of complementarity level in trait trade-offs within phytoplankton assemblages and the amount of noise in the resource supply concentrations. We found that the effect of shift from a sudden resource supply transition to a gradual one, as observed in systems impacted by watershed development, was dependent on the level of complementarity. In the extremes, phytoplankton species richness and relative overyielding increased when complementarity was lowest, and phytoplankton biomass increased greatly when complementarity was highest. For low-complementarity simulations, the persistence of poorer-performing phytoplankton species of intermediate R*s led to higher richness and relative overyielding. For high-complementarity simulations, the formation of phytoplankton species clusters and niche compression enabled higher biomass accumulation. Our findings suggest that an understanding of factors influencing the emergence of life history traits important to complementarity is necessary to predict the impact of watershed development on phytoplankton productivity and assemblage structure

    Analytical investigation of three turbopump feed systems suitable for high-pressure hydrogen-oxygen rocket-engine applications

    Get PDF
    Turbopump feed systems for high pressure hydrogen- oxygen rocket engine

    Experimental evaluation of a translating nozzle sidewall radial turbine

    Get PDF
    Studies have shown that reduced specific fuel consumption of rotorcraft engines can be achieved with a variable capacity engine. A key component in such an engine in a high-work, high-temperature variable geometry gas generator turbine. An optimization study indicated that a radial turbine with a translating nozzle sidewall could produce high efficiency over a wide range of engine flows but substantiating data were not available. An experimental program with Teledyne CAE, Toledo, Ohio was undertaken to evaluate the moving sidewall concept. A variety of translating nozzle sidewall turbine configurations were evaluated. The effects of nozzle leakage and coolant flows were also investigated. Testing was done in warm air (121 C). The results of the contractual program were summarized

    Cold-air performance of compressor-drive turbine of Department of Energy upgraded automobile gas turbine engine. 2: Stage performance

    Get PDF
    The aerodynamic performance of the compressor-drive turbine of the DOE upgraded gas turbine engine was determined in low temperature air. The as-received cast rotor blading had a significantly thicker profile than design and a fairly rough surface finish. Because of these blading imperfections a series of stage tests with modified rotors were made. These included the as-cast rotor, a reduced-roughness rotor, and a rotor with blades thinned to near design. Significant performance changes were measured. Tests were also made to determine the effect of Reynolds number on the turbine performance. Comparisons are made between this turbine and the compressor-drive turbine of the DOE baseline gas turbine engine

    Cold-air performance of the compressor-drive turbine of the Department of Energy baseline automobile gas-turbine engine

    Get PDF
    The aerodynamic performance of the compressor-drive turbine of the DOE baseline gas-turbine engine was determined over a range of pressure ratios and speeds. In addition, static pressures were measured in the diffusing transition duct located immediately downstream of the turbine. Results are presented in terms of mass flow, torque, specific work, and efficiency for the turbine and in terms of pressure recovery and effectiveness for the transition duct

    The effect of rotor blade thickness and surface finish on the performance of a small axial flow turbine

    Get PDF
    An experimental investigation was conducted to determine the effect of blade profile inaccuracies and surface finish on the aerodynamic performance of a 11.13 cm tip diameter turbine. The as-received cast rotor blades had a significantly thicker profile than the design intent and a fairly rough surface finish. Stage test results showed an increase of one point in efficieny by smoothing the surface finish and another three points by thinning the blade profiles to near the design profile. Most of the performance gain between the as-cast thick and the thinned rotor blades both with the same surface finish, was attributed to reduced trailing edge losses of the recontoured blades

    Cold-air performance of compressor-drive turbine of department of energy upgraded automobile gas turbine engine. 3: Performance of redesigned turbine

    Get PDF
    The aerodynamic performance of a redesigned compressor drive turbine of the gas turbine engine is determined in air at nominal inlet conditions of 325 K and 0.8 bar absolute. The turbine is designed with a lower flow factor, higher rotor reaction and a redesigned inlet volute compared to the first turbine. Comparisons between this turbine and the originally designed turbine show about 2.3 percentage points improvement in efficiency at the same rotor tip clearance. Two versions of the same rotor are tested: (1) an as cast rotor, and (2) the same rotor with reduced surface roughness. The effect of reducing surface roughness is about one half percentage point improvement in efficiency. Tests made to determine the effect of Reynolds number on the turbine performance show no effect for the range from 100,000 to 500,000

    The aerodynamic design of a compressor-drive turbine for use in a 75 kw automotive engine

    Get PDF
    The design of a single stage axial-flow turbine with a tip diameter of 11.15 cm is presented. The design specifications are given, and the aerodynamic design procedure is described. The aerodynamic information includes the results of flow path, velocity diagram, and blade profile studies. Predicted off-design performance characteristics are also presented

    Cold-air performance of compressor-drive turbine of Department of Energy upgraded automobile gas turbine engine. 1: Volute-manifold and stator performance

    Get PDF
    The aerodynamic performance of the inlet manifold and stator assembly of the compressor drive turbine was experimentally determined with cold air as the working fluid. The investigation included measurements of mass flow and stator-exit fluid torque as well as radial surveys of total pressure and flow angle at the stator inlet and annulus surveys of total pressure and flow angle at the stator exit. The stator-exit aftermixed flow conditions and overall stator efficiency were obtained and compared with their design values and the experimental results from three other stators. In addition, an analysis was made to determine the constituent aerodynamic losses that made up the stator kinetic energy loss
    • …
    corecore