278 research outputs found

    Curved track sprint characteristics in elementary school children

    Get PDF
    The management strategies of patients who underwent Mustard repair for transposition (of the great arteries were changed in the 1970s: infants became eligible for direct surgical repair, so Blalock-Hanlon atrioseptostomy could be avoided, and cold cardioplegia was introduced for myocardial preservation. Data are lacking, however, regarding whether these changes have had positive effects on the long-term outcome. We therefore conducted a follow-up study on all 91 patients who underwent a Mustard repair for transposition of the great arteries in our institution between 1973 and 1980 to assess the incidence and clinical importance of sequelae as well as health-related quality of life for these patients. Patients who were alive and could be traced through local registrar's offices received an invitation to participate in the follow-up study, which consisted of an interview, physical examination, echocardiography, exercise testing, and standard 12-lead and 24-hour electrocardiography. Patients operated on in the first 4 years had a significantly higher mortality rate and higher incidence of sinus node dysfunction than did patients operated on in the subsequent 4 years (25% vs 2% and 41% vs 3%, respectively). In contrast, the incidence of baffle obstruction necessitating reoperation was significantly higher in the second group. There were no significant differences in echocardiographic findings and exercise capacity between patients operated on in the first 4 years and in the subsequent 4 years. None of the patients had right ventricular failure; a mild degree of baffle leakage or obstruction was seen in 22% of the patients, and the mean exercise capacity was decreased to 84% +/- 16% of normal. The changes introduced between 1973 and 1980 have resulted in a considerable reduction of mortality and incidence of sinus node dysfunction but have also resulted in a more frequent need for reoperatio

    Adjustment method for mechanical Boston scientific corporation 30 MHz intravascular ultrasound catheters connected to a Clearview console. Mechanical 30 MHz IVUS catheter adjustment.

    Get PDF
    Intracoronary ultrasound (ICUS) is often used in studies evaluating new interventional techniques. It is important that quantitative measurements performed with various ICUS imaging equipment and materials are comparable. During evaluation of quantitative coronary ultrasound (QCU) software, it appeared that Boston Scientific Corporation (BSC) 30 MHz catheters connected to a Clearview ultrasound console showed smaller dimensions of an in vitro phantom model than expected. In cooperation with the manufacturer the cause of this underestimation was determined, which is described in this paper, and the QCU software was extended with an adjustment. Evaluation was performed by performing in vitro measurements on a phantom model consisting of four highly accurate steel rings (perfect reflectors) with diameters of 2, 3, 4 and 5 mm. Relative differences (unadjusted) of the phantom were respectively: 15.92, 13.01, 10.10 and 12.23%. After applying the adjustment: -0.96, -1.84, -1.35 and -1.43%. In vivo measurements were performed on 24 randomly selected ICUS studies. These showed differences for not adjusted vs. adjusted measurements of lumen-, vessel- and plaque volumes of -10.1 +/- 1.5, -6.7 +/- 0.9 and -4.4 +/- 0.6%. An off-line adjustment formula was derived and applied on previous numerical QCU output data showing relative differences for lumen- and vessel volumes of 0.36 +/- 0.51 and 0.13 +/- 0.31%. 30 MHz BSC catheters connected to a Clearview ultrasound console underestimate vessel dimensions. This can retrospectively be adjusted within QCU software as well as retrospectively on numerical QCU data using a mathematical model

    The use of pocket-size imaging devices: a position statement of the European Association of Echocardiography.

    Full text link
    Pocket-size imaging devices are a completely new type of echo machines which have recently reached the market. They are very cheap, smartphone-size hand-held echo machines with limited technical capabilities. The aim of this European Association of Echocardiography (EAE) position paper is to provide recommendations on the use of pocket-size imaging devices in the clinical arena by profiling the educational needs of potential users other than cardiologists experts in echo. EAE recommendations about pocket-size imaging devices can be summarized in: (1) pocket-size imaging devices do not provide a complete diagnostic echocardiographic examination. The range of indications for their use is therefore limited. (2) Imaging assessment with pocket-size imaging devices should be reported as part of the physical examination of the patient. Image data should be stored according to the applicable national rules for technical examinations. (3) With the exception of cardiologists who are certified for transthoracic echocardiography according to national legislation, specific training and certification is recommended for all users. The certification should be limited to the clinical questions that can potentially be answered by pocket-size devices. (4) The patient has to be informed that an examination with the current generation of pocket-size imaging devices does not replace a complete echocardiogram.Peer reviewe

    Improved identification of viable myocardium using second harmonic imaging during dobutamine stress echocardiography

    Get PDF
    OBJECTIVE: To determine whether, compared with fundamental imaging, second harmonic imaging can improve the accuracy of dobutamine stress echocardiography for identifying viable myocardium, using nuclear imaging as a reference. PATIENTS: 30 patients with chronic left ventricular dysfunction (mean (SD) age, 60 (8) years; 22 men). METHODS: Dobutamine stress echocardiography was carried out in all patients using both fundamental and second harmonic imaging. All patients underwent dual isotope simultaneous acquisition single photon emission computed tomography (DISA-SPECT) with (99m)technetium-tetrofosmin/(18)F-fluorodeoxyglucose on a separate day. Myocardial viability was considered present by dobutamine stress echocardiography when segments with severe dysfunction showed a biphasic sustained improvement or an ischaemic response. Viability criteria on DISA-SPECT were normal or mildly reduced perfusion and metabolism, or perfusion/metabolism mismatch. RESULTS: Using fundamental imaging, 330 segments showed severe dysfunction at baseline; 144 (44%) were considered viable. The agreement between dobutamine stress echocardiography by fundamental imaging and DISA-SPECT was 78%, kappa = 0.56. Using second harmonic imaging, 288 segments showed severe dysfunction; 138 (48%) were viable. The agreement between dobutamine stress echocardiography and DISA-SPECT was significantly better when second harmonic imaging was used (89%, kappa = 0.77, p = 0.001 v fundamental imaging). CONCLUSIONS: Second harmonic imaging applied during dobutamine stress echocardiography increases the agreement with DISA-SPECT for detecting myocardial viability

    Upon the Relation between Fats and Oils with Sulphur as Fungicide (V)

    Get PDF
    This study was done to ascertain whether three-dimensional echocardiography can facilitate the diagnosis of mitral valve abnormalities. The value of the additional information provided by three-dimensional echocardiography compared with two-dimensional multiplane transesophageal echocardiography for evaluation of the mitral valve apparatus has not been assessed. Thirty patients with a variety of mitral valve pathologies (stenosis in 8, insufficiency in 12, prostheses in 10) and 20 subjects with a normal mitral valve were studied. Images were acquired using the rotational technique (ever 2 degrees), with electrocardiographic and respiratory gating. From the three-dimensional data sets, cut planes were selected and presented in both two-dimensional format (anyplane echocardiography) and volume-rendered dynamic display. The data were compared with the original multiplane two-dimensional images. Different features of the mitral valve apparatus were defined and graded by three observers for clarity of visualization and confidence of interpretation as 1) inadequate, 2) sufficient, or 3) excellent. All the techniques provided good visualization of the mitral valve (mean global scores +/- SD for multiplane, anyplane and volume-rendered echocardiography were 2.22 +/- 0.34, 2.24 +/- 0.26 and 2.30 +/- 0.25, respectively). With volume-rendered echocardiography, the mitral valve apparatus was scored higher in pathologic than in normal conditions (2.38 +/- 0.24 vs. 2.16 +/- 0.21, p < 0.002). The spatial relationships between the mitral valve and other structures, leaflet mobility, commissures and orifice were scored higher by volume-rendered echocardiography. Prostheses were evaluated equally well by the three methods. Multiplane and anyplane echocardiography were superior for the evaluation of leaflet thickness, subvalvular apparatus and annulus. Transesophageal three-dimensional echocardiography facilitates imaging of some features of the mitral valve apparatus and provides additional information for comprehensive assessment of mitral valve abnormalitie

    Necrostatin-1 Analogues: Critical Issues on the Specificity, Activity and In Vivo Use in Experimental Disease Models

    Get PDF
    Necrostatin-1 (Nec-1) is widely used in disease models to examine the contribution of receptor-interacting protein kinase (RIPK) 1 in cell death and inflammation. We studied three Nec-1 analogs: Nec-1, the active inhibitor of RIPK1, Nec-1 inactive (Nec-1i), its inactive variant, and Nec-1 stable (Nec-1s), its more stable variant. We report that Nec-1 is identical to methyl-thiohydantoin-tryptophan, an inhibitor of the potent immunomodulatory enzyme indoleamine 2,3-dioxygenase (IDO). Both Nec-1 and Nec-1i inhibited human IDO, but Nec-1s did not, as predicted by molecular modeling. Therefore, Nec-1s is a more specific RIPK1 inhibitor lacking the IDO-targeting effect. Next, although Nec-1i was ∼100 × less effective than Nec-1 in inhibiting human RIPK1 kinase activity in vitro, it was only 10 times less potent than Nec-1 and Nec-1s in a mouse necroptosis assay and became even equipotent at high concentrations. Along the same line, in vivo, high doses of Nec-1, Nec-1i and Nec-1s prevented tumor necrosis factor (TNF)-induced mortality equally well, excluding the use of Nec-1i as an inactive control. Paradoxically, low doses of Nec-1 or Nec-1i, but not Nec -1s, even sensitized mice to TNF-induced mortality. Importantly, Nec-1s did not exhibit this low dose toxicity, stressing again the preferred use of Nec-1s in vivo. Our findings have important implications for the interpretation of Nec-1-based data in experimental disease models

    Serine 25 phosphorylation inhibits RIPK1 kinase-dependent cell death in models of infection and inflammation

    Get PDF
    RIPK1 regulates cell death and inflammation through kinase-dependent and -independent mechanisms. As a scaffold, RIPK1 inhibits caspase-8-dependent apoptosis and RIPK3/MLKL-dependent necroptosis. As a kinase, RIPK1 paradoxically induces these cell death modalities. The molecular switch between RIPK1 pro-survival and pro-death functions remains poorly understood. We identify phosphorylation of RIPK1 on Ser25 by IKKs as a key mechanism directly inhibiting RIPK1 kinase activity and preventing TNF-mediated RIPK1-dependent cell death. Mimicking Ser25 phosphorylation (S > D mutation) protects cells and mice from the cytotoxic effect of TNF in conditions of IKK inhibition. In line with their roles in IKK activation, TNF-induced Ser25 phosphorylation of RIPK1 is defective in TAK1- or SHARPIN-deficient cells and restoring phosphorylation protects these cells from TNF-induced death. Importantly, mimicking Ser25 phosphorylation compromises the in vivo cell death-dependent immune control of Yersinia infection, a physiological model of TAK1/IKK inhibition, and rescues the cell death-induced multi-organ inflammatory phenotype of the SHARPIN-deficient mice

    What is new in pediatric cardiac imaging?

    Get PDF
    Cardiac imaging has had significant influence on the science and practice of pediatric cardiology. Especially the development and improvements made in noninasive imaging techniques, like echocardiography and cardiac magnetic resonance imaging (MRI), have been extremely important. Technical advancements in the field of medical imaging are quickly being made. This review will focus on some of the important evolutions in pediatric cardiac imaging. Techniques such as intracardiac echocardiography, 3D echocardiography, and tissue Doppler imaging are relatively new echocardiographic techniques, which further optimize the anatomical and functional aspects of congenital heart disease. Also, the current standing of cardiac MRI and cardiac computerized tomography will be discussed. Finally, the recent European efforts to organize training and accreditation in pediatric echocardiography are highlighted
    • …
    corecore