132 research outputs found

    Levels of Abstractness in Semantic Noun and Verb Processing:The Role of Sensoryā€‘Perceptual and Sensoryā€‘Motor Information

    Get PDF
    Effects of concreteness and grammatical class on lexical-semantic processing are well-documented, but the role of sensory-perceptual and sensory-motor features of concepts in underlying mechanisms producing these effects is relatively unknown. We hypothesized that processing dissimilarities in accuracy and response time performance in nouns versus verbs, concrete versus abstract words, and their interaction can be explained by differences in semantic weightā€”the combined amount of sensory-perceptual and sensory-motor information to conceptual representationsā€”across those grammatical and semantic categories. We assessed performance on concrete and abstract subcategories of nouns and verbs with a semantic similarity judgment task. Results showed that when main effects of concreteness and grammatical class were analyzed in more detail, the grammatical-class effect, in which nouns are processed more accurately and quicker than verbs, was only present for concrete words, not for their abstract counterparts. Moreover, the concreteness effect, measured at different levels of abstract words, was present for both nouns and verbs, but it was less pronounced for verbs. The results do not support the grammatical-class hypothesis, in which nouns and verbs are separately organized, and instead provide evidence in favor of a unitary semantic space, in which lexical-semantic processing is influenced by the beneficial effect of sensory-perceptual and sensory-motor information of concepts

    Milk protein oxidation in healthy subjects:A preliminary study

    Get PDF
    The role of protein oxidation in the regulation of whole body protein metabolism is unknown. Previously, it was observed that vigorous exercise led to increased protein oxidation. To further characterise 13C-milk protein oxidation in healthy subjects, the oxidation of ingested 13C-protein after an overnight fast was measured using a non-invasive 13C-protein breath test. This approach enables the analysis of 13C-protein oxidation kinetics and the effect of interfering factors. It was found that the estimated maximal 13C-milk protein oxidation was 0.07 g mināˆ’1, corresponding to a theoretical maximal oxidation capacity of ā‰ˆ1.4 g kg body weightāˆ’1 dāˆ’1. No indications were found for preferential oxidation of non-essential amino acids. Combined ingestion of 30 g 13C-whey protein with 30 g glucose resulted in a 19% decrease of 13C-whey protein oxidation. It was concluded that exogenous 13C-whey protein oxidation can be affected by other co-ingested nutrients like glucose

    Proteomics profiling of urine with surface enhanced laser desorption/ionization time of flight mass spectrometry

    Get PDF
    BACKGROUND: Urine consists of a complex mixture of peptides and proteins and therefore is an interesting source of biomarkers. Because of its high throughput capacity SELDI-TOF-MS is a proteomics technology frequently used in biomarker studies. We compared the performance of seven SELDI protein chip types for profiling of urine using standard chip protocols. RESULTS: Performance was assessed by determining the number of detectable peaks and spot to spot variation for the seven array types and two different matrices: SPA and CHCA. A urine sample taken from one healthy volunteer was applied in eight-fold for each chip type/matrix combination. Data were analyzed for total number of detected peaks (S/N > 5). Spot to spot variation was determined by calculating the average CV of peak intensities. In addition, an inventory was made of detectable peaks with each chip and matrix type. Also the redundancy in peaks detected with the different chip/matrix combinations was determined. A total of 425 peaks (136 non-redundant peaks) could be detected when combining the data from the seven chip types and the two matrices. Most peaks were detected with the CM10 chip with CHCA (57 peaks). The Q10 with CHCA (51 peaks), SEND (48 peaks) and CM10 with SPA (48 peaks) also performed well. The CM10 chip with CHCA also has the best reproducibility with an average CV for peak intensity of 13%. CONCLUSION: The combination of SEND, CM10 with CHCA, CM10 with SPA, IMAC-Cu with SPA and H50 with CHCA provides the optimal information from the urine sample with good reproducibility. With this combination a total of 217 peaks (71 non-redundant peaks) can be detected with CV's ranging from 13 to 26%, depending on the chip and matrix type. Overall, CM10 with CHCA is the best performing chip type

    Sample Stability and Protein Composition of Saliva: Implications for Its Use as a Diagnostic Fluid

    Get PDF
    Saliva is an easy accessible plasma ultra-filtrate. Therefore, saliva can be an attractive alternative to blood for measurement of diagnostic protein markers. Our aim was to determine stability and protein composition of saliva. Protein stability at room temperature was examined by incubating fresh whole saliva with and without inhibitors of proteases and bacterial metabolism followed by Surface Enhanced Laser Desorption/Ionization (SELDI) analyses. Protein composition was determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) fractionation of saliva proteins followed by digestion of excised bands and identification by liquid chromatography tandem mass spectrometry (LC-MS/MS). Results show that rapid protein degradation occurs within 30 minutes after sample collection. Degradation starts already during collection. Protease inhibitors partly prevented degradation while inhibition of bacterial metabolism did not affect degradation. Three stable degradation products of 2937 Da, 3370 Da and 4132 Da were discovered which can be used as markers to monitor sample quality. Saliva proteome analyses revealed 218 proteins of which 84 can also be found in blood plasma. Based on a comparison with seven other proteomics studies on whole saliva we identified 83 new saliva proteins. We conclude that saliva is a promising diagnostic fluid when precautions are taken towards protein breakdown

    Diet Quality and Upper Gastrointestinal Cancers Risk:A Meta-Analysis and Critical Assessment of Evidence Quality

    Get PDF
    We aimed to assess the effect of a high-quality diet on the risk of upper gastrointestinal cancer and to evaluate the overall quality of our findings by searching PubMed, EMBASE, Web of Science, Cochrane, and the references of related articles to February 2020. Two reviewers independently retrieved the data and performed the quality assessments. We defined the highest-quality diet as that with the lowest Diet Inflammatory Index category and the highest Mediterranean Diet Score category. Overall odds ratios and 95% confidence intervals were estimated for upper gastrointestinal cancer risk comparing the highest- versus lowest-diet quality. A random-effects meta-analysis was then applied with Review Manager, and the quality of the overall findings was evaluated with the Grading of Recommendations Assessment, Development, and Evaluation approach. The highest-quality diets were significantly associated with reduced risk of upper gastrointestinal cancers, achieving odds ratios of 0.59 (95% confidence interval: 0.48-0.72) for the Diet Inflammatory Index, pooling the findings from nine studies, and 0.72 (95% confidence interval: 0.61-0.88) for the Mediterranean Diet Score, pooling the findings from 11 studies. We observed a minimum of 69% heterogeneity in the pooled results. The pooled results were graded as low quality of evidence. Although it may be possible to offer evidence-based general dietary advice for the prevention of upper gastrointestinal cancers, the evidence is currently of insufficient quality to develop dietary recommendations

    Aerobic exercise increases post-exercise exogenous protein oxidation in healthy young males

    Get PDF
    The capacity to utilize ingested protein for optimal support of protein synthesis and lean body mass is described within the paradigm of anabolic competence. Protein synthesis can be stimulated by physical exercise, however, it is not known if physical exercise affects post-exercise protein oxidation. Characterization of the driving forces behind protein oxidation, such as exercise, can contribute to improved understanding of whole body protein metabolism. The purpose of this study is to determine the effect of two levels of aerobic exercise intensity on immediate post-exercise exogenous protein oxidation. Sixteen healthy males with a mean (SD) age of 24 (4) years participated. The subjects' VO2-max was estimated with the ƅstrand cycling test. Habitual dietary intake was assessed with a three-day food diary. Exogenous protein oxidation was measured by isotope ratio mass spectrometry. These measurements were initiated after the ingestion of a 30 g 13C-milk protein test drink that was followed by 330 minutes breath sample collection. On three different days with at least one week in between, exogenous protein oxidation was measured: 1) during rest, 2) after 15 minutes of aerobic exercise at 30% of VO2-max (moderate intensity), and 3) after 15 minutes of aerobic exercise at 60% of VO2-max (vigorous intensity). After vigorous intensity aerobic exercise, 31.8%Ā±8.0 of the 30 g 13C-milk protein was oxidized compared to 26.2%Ā±7.1 during resting condition (p = 0.012), and 25.4%Ā±7.6 after moderate intensity aerobic exercise compared to resting (p = 0.711). In conclusion, exogenous protein oxidation is increased after vigorous intensity aerobic exercise which could be the result of an increased protein turnover rate

    Semantic and lexical features of words dissimilarly affected by non-fluent, logopenic, and semantic primary progressive aphasia

    Get PDF
    OBJECTIVE: To determine the effect of three psycholinguistic variables-lexical frequency, age of acquisition (AoA), and neighborhood density (ND)-on lexical-semantic processing in individuals with non-fluent (nfvPPA), logopenic (lvPPA), and semantic primary progressive aphasia (svPPA). Identifying the scope and independence of these features can provide valuable information about the organization of words in our mind and brain. METHOD: We administered a lexical decision task-with words carefully selected to permit distinguishing lexical frequency, AoA, and orthographic ND effects-to 41 individuals with PPA (13 nfvPPA, 14 lvPPA, 14 svPPA) and 25 controls. RESULTS: Of the psycholinguistic variables studied, lexical frequency had the largest influence on lexical-semantic processing, but AoA and ND also played an independent role. The results reflect a brain-language relationship with different proportional effects of frequency, AoA, and ND in the PPA variants, in a pattern that is consistent with the organization of the mental lexicon. Individuals with nfvPPA and lvPPA experienced an ND effect consistent with the role of inferior frontal and temporoparietal regions in lexical analysis and word form processing. By contrast, individuals with svPPA experienced an AoA effect consistent with the role of the anterior temporal lobe in semantic processing. CONCLUSIONS: The findings are in line with a hierarchical mental lexicon structure with a conceptual (semantic) and a lexeme (word-form) level, such that a selective deficit at one of these levels of the mental lexicon manifests differently in lexical-semantic processing performance, consistent with the affected language-specific brain region in each PPA variant
    • ā€¦
    corecore