7 research outputs found

    The Lunar Polar Hydrogen Mapper (LunaH-Map) Mission

    Get PDF
    The Lunar Polar Hydrogen Mapper (LunaH-Map) mission will map hydrogen enrichments within permanently shadowed regions at the lunar south pole using a miniature neutron spectrometer. While hydrogen enrichments have been identified regionally from previous orbital missions, the spatial extent of these regions are often below the resolution of the neutron instruments that have flown on lunar missions. LunaH-Map will enter into an elliptical, low altitude perseline orbit which will enable the mission to spatially isolate and constrain the hydrogen enrichments within permanently shadowed regions. LunaH-Map will use a solid iodine ion propulsion system, X-Band radio communications through the NASA Deep Space Network, star tracker, C&DH and EPS systems from Blue Canyon Technologies, solar arrays from MMA Designs, LLC, mission design and navigation by KinetX. Spacecraft systems design, integration, qualification, test and mission operations are performed by Arizona State University

    LunaH-Map: Revealing Lunar Water with a New Radiation Sensor Array

    Get PDF
    A new type of neutron and gamma-ray spectrometer called the Miniature Neutron Spectrometer (Mini-NS) has been developed, assembled, qualified and delivered as part of the Lunar Polar Hydrogen Mapper (LunaH-Map) cubesat mission. The LunaH-Map spacecraft is currently manifested as a secondary payload on the Space Launch System (SLS) Artemis-1 rocket. LunaH-Map will deploy from Artemis-1 and enter a low altitude perilune elliptical orbit around the Moon. The Mini-NS will measure the lunar epithermal neutron albedo, and measurements around perilune will be used to produce maps of hydrogen enrichments and depletions across the lunar South Pole region including both within and outside of permanently shadowed regions (PSRs). The Min-NS was designed to achieve twice the epithermal neutron count rate of the Lunar Prospector Neutron Spectrometer (LP-NS). The instrument response was characterized through the collection of pre-flight neutron counting data with a Cf-252 neutron source at Arizona State University across hundreds of power cycles, as well as across the expected temperature range. The instrument spatial response was characterized at the Los Alamos National Laboratories (LANL) Neutron Free In-Air Facility. The LunaH-Map Mini-NS was designed to fit within the cubesat form-factor and uses two detectors with eight sensor heads that can be operated independently. For future missions with different science goals that can be achieved with epithermal neutron detection, the number of Mini-NS sensor heads can easily be modified without requiring a complete re-design and re-qualification

    Comment letters to the National Commission on Commission on Fraudulent Financial Reporting, 1987 (Treadway Commission) Vol. 2

    Get PDF
    https://egrove.olemiss.edu/aicpa_sop/1662/thumbnail.jp

    For

    No full text
    Discharge Elimination System Permit No. CA0048143) for the City of Santa Barbara’s El Ester

    NEUTRON-1 Mission: Low Earth Orbit Neutron Flux Detection and COSMOS Mission Operations Technology Demonstration

    Get PDF
    The Neutron-1 mission is scheduled to launch on ELaNa 25 during the Fall of 2019. The 3U CubeSat will measure low energy neutron flux in Low Earth Orbit (LEO). The CubeSat was developed by the Hawaii Space Flight Laboratory (HSFL) at the University of Hawaii at Manoa (UHM). The science payload, a small neutron detector developed by Arizona State University (ASU) for the LunaH-Map, will focus on measurements of low energy secondary neutrons, one of the components of the LEO neutron environment. In addition, this mission presents an excellent opportunity to establish flight heritage and demonstrate the technological capabilities of the NASA EPSCoR funded Comprehensive Open-architecture Solution for Mission Operations Systems (COSMOS, http://cosmos-project.org ). COSMOS is an open source set of tools that is being developed at HSFL as an integrated operations solution (including flight software, ground station operations, and mission operations center) for Small Satellite missions. It is intended to enable/facilitate SmallSat mission operations at universities with limited budgets and short schedules
    corecore