13 research outputs found

    Underwater Video as a Tool to Quantify Fish Density in Complex Coastal Habitats

    Get PDF
    Habitat loss is a serious issue threatening biodiversity across the planet, including coastal habitats that support important fish populations. Many coastal areas have been extensively modified by the construction of infrastructure such as ports, seawalls, docks, and armored shorelines. In addition, habitat restoration and enhancement projects often include constructed breakwaters or reefs. Such infrastructure may have incidental or intended habitat values for fish, yet their physical complexity makes quantitatively sampling these habitats with traditional gears challenging. We used a fleet of unbaited underwater video cameras to quantify fish communities across a variety of constructed and natural habitats in Perdido and Pensacola Bays in the central northern Gulf of Mexico. Between 2019 and 2021, we collected almost 350 replicate 10 min point census videos from rock jetty, seawall, commercial, public, and private docks, artificial reef, restored oyster reef, seagrass, and shallow sandy habitats. We extracted standard metrics of Frequency of Occurrence and MaxN, as well as more recently developed MeanCount for each taxon observed. Using a simple method to measure the visibility range at each sampling site, we calculated the area of the field of view to convert MeanCount to density estimates. Our data revealed abundant fish assemblages on constructed habitats, dominated by important fisheries species, including grey snapper Lutjanus griseus and sheepshead Archosargus probatocephalus. Our analyses suggest that density estimates may be obtained for larger fisheries species under suitable conditions. Although video is limited in more turbid estuarine areas, where conditions allow, it offers a tool to quantify fish communities in structurally complex habitats inaccessible to other quantitative gears

    Nutritional modulation of endogenous glucagon-like peptide-1 secretion: a review

    Full text link

    Impact of Exogenous Nitric Oxide Treatment on Vascularization of a Subcutaneous Device for Cell Transplantation

    No full text
    Subcutaneous polymer scaffolds have shown potential for creating an optimal transplantation site in cellular replacement therapy, e.g., when transplanting insulin-producing cells to cure type 1 diabetes. Imperative for these scaffolds is a high degree of vascularization to guarantee long-term functional cellular survival. In this study, the effect of the nitric oxide (NO) donor S-nitroso-N-acetyl-dl-penicillamine (SNAP) on the vascularization degree of a subcutaneous poly(d,l-lactide-co-ε-caprolactone) (PDLLCL) scaffold was investigated. To this end, scaffolds were implanted under the skin of C57BL/6 mice. Each mouse received a control scaffold and a scaffold containing SNAP. At day 7, 14, and 28, the oxygen percentage within the scaffolds was measured and at day 28, the vascularization degree was determined with lectin infusion and gene expression analysis. We measured lower oxygen percentages within the scaffolds containing the NO-donor up to day 14 compared to the control scaffolds, but no differences were found at day 28. Although blood vessels in the scaffolds were well perfused, no differences between the groups were found in the lectin staining and gene expression of vascular markers, such as CD31, CD105, and VEGFa. To conclude, in this biomaterial setting, addition of a NO-donor did not improve the vascularization degree of the subcutaneous scaffold

    Impact of Exogenous Nitric Oxide Treatment on Vascularization of a Subcutaneous Device for Cell Transplantation

    No full text
    Subcutaneous polymer scaffolds have shown potential for creating an optimal transplantation site in cellular replacement therapy, e.g., when transplanting insulin-producing cells to cure type 1 diabetes. Imperative for these scaffolds is a high degree of vascularization to guarantee long-term functional cellular survival. In this study, the effect of the nitric oxide (NO) donor S-nitroso-N-acetyl-dl-penicillamine (SNAP) on the vascularization degree of a subcutaneous poly(d,l-lactide-co-ε-caprolactone) (PDLLCL) scaffold was investigated. To this end, scaffolds were implanted under the skin of C57BL/6 mice. Each mouse received a control scaffold and a scaffold containing SNAP. At day 7, 14, and 28, the oxygen percentage within the scaffolds was measured and at day 28, the vascularization degree was determined with lectin infusion and gene expression analysis. We measured lower oxygen percentages within the scaffolds containing the NO-donor up to day 14 compared to the control scaffolds, but no differences were found at day 28. Although blood vessels in the scaffolds were well perfused, no differences between the groups were found in the lectin staining and gene expression of vascular markers, such as CD31, CD105, and VEGFa. To conclude, in this biomaterial setting, addition of a NO-donor did not improve the vascularization degree of the subcutaneous scaffold

    The Effect of a Fast-Releasing Hydrogen Sulfide Donor on Vascularization of Subcutaneous Scaffolds in Immunocompetent and Immunocompromised Mice.

    Get PDF
    Islet transplantation into subcutaneous polymer scaffolds has shown to successfully induce normoglycemia in type 1 diabetes models. Vascularization of these scaffolds is imperative for optimal control of glucose levels. We studied the effect of the vascular stimulator hydrogen sulfide (H2S) on the degree of vascularization of a scaffold and the role of the immune system in this process. Scaffolds were subcutaneously implanted in immunocompetent C57BL/6 and immunocompromised nude mice. Mice received twice-daily intraperitoneal injections of the fast-releasing H2S donor sodium hydrosulfide (NaHS, 25 or 50 ÎĽmol/kg) or saline for 28 days. After 63 days the vascular network was analyzed by histology and gene expression. Here we showed that the vascularization of a subcutaneous scaffold in nude mice was significantly impaired by H2S treatment. Both the CD31 gene and protein expression were reduced in these scaffolds compared to the saline-treated controls. In C57BL/6 mice, the opposite was found, the vascularization of the scaffold was significantly increased by H2S. The mRNA expression of the angiogenesis marker CD105 was significantly increased compared to the controls as well as the number of CD31 positive blood vessels. In conclusion, the immune system plays an important role in the H2S mediated effect on vascularization of subcutaneous scaffolds

    Successful Islet Transplantation into a Subcutaneous Polycaprolactone Scaffold in Mice and Pigs

    Get PDF
    Background. Islet transplantation is a promising treatment for type 1 diabetes. It has the potential to improve glycemic control, particularly in patients suffering from hypoglycemic unawareness and glycemic instability. As most islet grafts do not function permanently, efforts are needed to create an accessible and replaceable site, for islet grafts or for insulin-producing cells obtained from replenishable sources. To this end, we designed and tested an artificial, polymeric subcutaneous transplantation site that allows repeated transplantation of islets. Methods. In this study, we developed and compared scaffolds made of poly(D,L,-lactide-co-ϵ-caprolactone) (PDLLCL) and polycaprolactone (PCL). Efficacy was first tested in mice‚ and then, as a proof of principle for application in a large animal model, the scaffolds were tested in pigs, as their skin structure is similar to that of humans. Results. In mice, islet transplantation in a PCL scaffold expedited return to normoglycemia in comparison to PDLLCL (7.7 ± 3.7 versus 16.8 ± 6.5 d), but it took longer than the kidney capsule control group. PCL also supported porcine functional islet survival in vitro. Subcutaneous implantation of PDLLCL and PCL scaffolds in pigs revealed that PCL scaffolds were more stable and was associated with less infiltration by immune cells than PDLLCL scaffolds. Prevascularized PCL scaffolds were therefore used to demonstrate the functional survival of allogenic islets under the skin of pigs. Conclusions. To conclude, a novel PCL scaffold shows efficacy as a readily accessible and replaceable, subcutaneous transplantation site for islets in mice and demonstrated islet survival after a month in pigs

    A Recommender System Based on Effort: Towards Minimising Negative Affects and Maximising Achievement in CS1 Learning

    Get PDF
    Programming online judges (POJs) are autograders that have been increasingly used in introductory programming courses (also known as CS1) since these systems provide instantaneous and accurate feedback for learners’ codes solutions and reduce instructors’ workload in evaluating the assignments. Nonetheless, learners typically struggle to find problems in POJs that are adequate for their programming skills. A potential reason is that POJs present problems with varied categories and difficulty levels, which may cause a cognitive overload, due to the large amount of information (and choice) presented to the student. Thus, students can often feel less capable, which may result in undesirable affective states, such as frustration and demotivation, decreasing their performance and potentially leading to increasing dropout rates. Recently, new research emerged on systems to recommend problems in POJs; however, the data collection for these approaches was not fine-grained; importantly, they did not take into consideration the students’ previous effort and achievement. Thus, this study proposes for the first time a prescriptive analytics solution for students’ programming behaviour by constructing and evaluating an automatic recommender module based on students’ effort, to personalise the problems presented to the learner in POJs. The aim is to improve the learners achievement, whilst minimising negative affective states in CS1 courses. Results in a within-subject double-blind controlled experiment showed that our method significantly improved positive affective states, whilst minimising the negatives ones. Moreover, our recommender significantly increased students’ achievement (correct solutions) and reduced dropout and failure in problem-solving

    Successful Islet Transplantation Into a Subcutaneous Polycaprolactone Scaffold in Mice and Pigs

    No full text
    Background. Islet transplantation is a promising treatment for type 1 diabetes. It has the potential to improve glycemic control, particularly in patients suffering from hypoglycemic unawareness and glycemic instability. As most islet grafts do not function permanently, efforts are needed to create an accessible and replaceable site, for islet grafts or for insulin-producing cells obtained from replenishable sources. To this end, we designed and tested an artificial, polymeric subcutaneous transplantation site that allows repeated transplantation of islets. Methods. In this study, we developed and compared scaffolds made of poly(D,L,-lactide-co-ε-caprolactone) (PDLLCL) and polycaprolactone (PCL). Efficacy was first tested in mice‚ and then, as a proof of principle for application in a large animal model, the scaffolds were tested in pigs, as their skin structure is similar to that of humans. Results. In mice, islet transplantation in a PCL scaffold expedited return to normoglycemia in comparison to PDLLCL (7.7 ± 3.7 versus 16.8 ± 6.5 d), but it took longer than the kidney capsule control group. PCL also supported porcine functional islet survival in vitro. Subcutaneous implantation of PDLLCL and PCL scaffolds in pigs revealed that PCL scaffolds were more stable and was associated with less infiltration by immune cells than PDLLCL scaffolds. Prevascularized PCL scaffolds were therefore used to demonstrate the functional survival of allogenic islets under the skin of pigs. Conclusions. To conclude, a novel PCL scaffold shows efficacy as a readily accessible and replaceable, subcutaneous transplantation site for islets in mice and demonstrated islet survival after a month in pigs
    corecore