206 research outputs found

    TrkB signaling is required for behavioral sensitization and conditioned place preference induced by a single injection of cocaine

    Get PDF
    AbstractExogenous brain-derived neurotrophic factor (BDNF) can regulate behavioral sensitization and conditioned place preference (CPP) when animals are exposed to repeated cocaine administration. However, it is unclear whether BDNF signaling through the TrkB receptor can mediate these behavioral responses when animals are given a single cocaine exposure. Because TrkB knockout mice die as neonates, we engineered a transgenic mouse that expressed a dominant negative form of TrkB (dnTrkB) in a conditional and reversible manner. We assessed also activation of endogenous TrkB by quantifying levels of phosphorylated TrkB (p-TrkB) in the nucleus accumbens (NAc). We found that a single exposure to cocaine was sufficient to increase p-TrkB within the NAc 9–12h after administration. Expression of the dnTrkB transgene not only prevented the acute cocaine-induced increase in p-TrkB, but it also prevented behavioral sensitization and CPP following a single cocaine injection. These findings demonstrate that TrkB activation is required both for behavioral sensitization and CPP to a single cocaine exposure. The fact that enhanced TrkB activation is induced within 9h of a single injection of cocaine suggests that inhibition of TrkB signaling commencing hours after cocaine exposure may prevent at least the initial antecedents to the sensitizing and reinforcing effects of this psychostimulant

    The carboxypeptidase E knockout mouse exhibits endocrinological and behavioral deficits

    Get PDF
    A carboxypeptidase E (CPE) knockout ( KO) mouse was generated by deletion of exons 4 and 5 from the CPE gene, and its phenotype was characterized. KO mice became obese by 10 - 12 wk of age and reached 60 - 80 g by 40 wk. At this age, body fat content was more than double that in the wild-type (WT) controls. The null animals consumed more food overall, were less physically active during the light phase of the light-dark cycle, and burned fewer calories as fat than WT littermates. Fasting levels of glucose and insulin-like immunoreactivity in plasma were elevated in both male and female KO mice at approximately 20 wk; males recovered fully and females partially from this state by 32 wk. At this time, insulin-like immunoreactivity in the plasma, identified as proinsulin, was 50 - 100 times higher than that of the WT animals. The KO mice showed impaired glucose clearance and were insulin resistant. High levels of leptin and no circulating fully processed cocaine- and amphetamine-related transcript, a peptide that is responsive to leptin-induced feedback inhibition of feeding, were found in serum. The KO mice were subfertile and showed deficits in GnRH processing in the hypothalamus. Behavioral analyses revealed that KO animals showed diminished reactivity to stimuli and had reduced muscle strength and coordination, as well as visual placing and toe-pinch reflexes. These data demonstrate that CPE KO mice display a wide range of neural and endocrine abnormalities and suggest that CPE may have additional physiological roles beyond those ascribed to peptide processing and sorting of prohormones in cells

    Diet-induced obesity differentially regulates behavioral, biomechanical, and molecular risk factors for osteoarthritis in mice

    Get PDF
    INTRODUCTION: Obesity is a major risk factor for the development of osteoarthritis in both weight-bearing and nonweight-bearing joints. The mechanisms by which obesity influences the structural or symptomatic features of osteoarthritis are not well understood, but may include systemic inflammation associated with increased adiposity. In this study, we examined biomechanical, neurobehavioral, inflammatory, and osteoarthritic changes in C57BL/6J mice fed a high-fat diet. METHODS: Female C57BL/6J mice were fed either a 10% kcal fat or a 45% kcal fat diet from 9 to 54 weeks of age. Longitudinal changes in musculoskeletal function and inflammation were compared with endpoint neurobehavioral and osteoarthritic disease states. Bivariate and multivariate analyses were conducted to determine independent associations with diet, percentage body fat, and knee osteoarthritis severity. We also examined healthy porcine cartilage explants treated with physiologic doses of leptin, alone or in combination with IL-1α and palmitic and oleic fatty acids, to determine the effects of leptin on cartilage extracellular matrix homeostasis. RESULTS: High susceptibility to dietary obesity was associated with increased osteoarthritic changes in the knee and impaired musculoskeletal force generation and motor function compared with controls. A high-fat diet also induced symptomatic characteristics of osteoarthritis, including hyperalgesia and anxiety-like behaviors. Controlling for the effects of diet and percentage body fat with a multivariate model revealed a significant association between knee osteoarthritis severity and serum levels of leptin, adiponectin, and IL-1α. Physiologic doses of leptin, in the presence or absence of IL-1α and fatty acids, did not substantially alter extracellular matrix homeostasis in healthy cartilage explants. CONCLUSIONS: These results indicate that diet-induced obesity increases the risk of symptomatic features of osteoarthritis through changes in musculoskeletal function and pain-related behaviors. Furthermore, the independent association of systemic adipokine levels with knee osteoarthritis severity supports a role for adipose-associated inflammation in the molecular pathogenesis of obesity-induced osteoarthritis. Physiologic levels of leptin do not alter extracellular matrix homeostasis in healthy cartilage, suggesting that leptin may be a secondary mediator of osteoarthritis pathogenesis

    The G protein biased serotonin 5-HT2A receptor agonist lisuride exerts anti-depressant drug-like activities in mice

    Get PDF
    There is now evidence from multiple Phase II clinical trials that psychedelic drugs can exert long-lasting anxiolytic, anti-depressant, and anti-drug abuse (nicotine and ethanol) effects in patients. Despite these benefits, the hallucinogenic actions of these drugs at the serotonin 2A receptor (5-HT2AR) limit their clinical use in diverse settings. Activation of the 5-HT2AR can stimulate both G protein and β-arrestin (βArr) -mediated signaling. Lisuride is a G protein biased agonist at the 5-HT2AR and, unlike the structurally-related lysergic acid diethylamide (LSD), the drug does not typically produce hallucinations in normal subjects at routine doses. Here, we examined behavioral responses to lisuride, in wild-type (WT), βArr1-knockout (KO), and βArr2-KO mice. In the open field, lisuride reduced locomotor and rearing activities, but produced a U-shaped function for stereotypies in both βArr lines of mice. Locomotion was decreased overall in βArr1-KOs and βArr2-KOs relative to wild-type controls. Incidences of head twitches and retrograde walking to lisuride were low in all genotypes. Grooming was decreased in βArr1 mice, but was increased then decreased in βArr2 animals with lisuride. Serotonin syndrome-associated responses were present at all lisuride doses in WTs, but they were reduced especially in βArr2-KO mice. Prepulse inhibition (PPI) was unaffected in βArr2 mice, whereas 0.5 mg/kg lisuride disrupted PPI in βArr1 animals. The 5-HT2AR antagonist MDL100907 failed to restore PPI in βArr1 mice, whereas the dopamine D2/D3 antagonist raclopride normalized PPI in WTs but not in βArr1-KOs. Clozapine, SCH23390, and GR127935 restored PPI in both βArr1 genotypes. Using vesicular monoamine transporter 2 mice, lisuride reduced immobility times in tail suspension and promoted a preference for sucrose that lasted up to 2 days. Together, it appears βArr1 and βArr2 play minor roles in lisuride’s actions on many behaviors, while this drug exerts anti-depressant drug-like responses without hallucinogenic-like activities

    Conserved YKL-40 changes in mice and humans after postoperative delirium

    Get PDF
    Delirium is a common postoperative neurologic complication among older adults. Despite its prevalence (14%–50%) and likely association with inflammation, the exact mechanisms that underpin postoperative delirium are unclear. This project aimed to characterize systemic and central nervous system (CNS) inflammatory changes following surgery in mice and humans. Matched plasma and cerebrospinal fluid (CSF) samples from the “Investigating Neuroinflammation Underlying Postoperative Brain Connectivity Changes, Postoperative Cognitive Dysfunction, Delirium in Older Adults” (INTUIT; NCT03273335) study were compared to murine endpoints. Delirium-like behavior was evaluated in aged mice using the 5-Choice Serial Reaction Time Test (5-CSRTT). Using a well established orthopedic surgical model in the FosTRAP reporter mouse we detected neuronal changes in the prefrontal cortex, an area implicated in attention, but notably not in the hippocampus. In aged mice, plasma interleukin-6 (IL-6), chitinase-3-like protein 1 (YKL-40), and neurofilament light chain (NfL) levels increased after orthopedic surgery, but hippocampal YKL-40 expression was decreased. Given the growing evidence for a YKL-40 role in delirium and other neurodegenerative conditions, we assayed human plasma and CSF samples. Plasma YKL-40 levels were similarly increased after surgery, with a trend toward a greater postoperative plasma YKL-40 increase in patients with delirium. However, YKL-40 levels in CSF decreased following surgery, which paralleled the findings in the mouse brain. Finally, we confirmed changes in the blood-brain barrier (BBB) as early as 9 h after surgery in mice, which warrants more detailed and acute evaluations of BBB integrity following surgery in humans. Together, these results provide a nuanced understanding of neuroimmune interactions underlying postoperative delirium in mice and humans, and highlight translational biomarkers to test potential cellular targets and mechanisms

    5-HT2C Agonists Modulate Schizophrenia-Like Behaviors in Mice

    Get PDF
    All FDA-approved antipsychotic drugs (APDs) target primarily dopamine D2 or serotonin (5-HT2A) receptors, or both; however, these medications are not universally effective, they may produce undesirable side effects, and provide only partial amelioration of negative and cognitive symptoms. The heterogeneity of pharmacological responses in schizophrenic patients suggests that additional drug targets may be effective in improving aspects of this syndrome. Recent evidence suggests that 5-HT2C receptors may be a promising target for schizophrenia since their activation reduces mesolimbic nigrostriatal dopamine release (which conveys antipsychotic action), they are expressed almost exclusively in CNS, and have weight-loss-promoting capabilities. A difficulty in developing 5-HT2C agonists is that most ligands also possess 5-HT2B and/or 5-HT2A activities. We have developed selective 5-HT2C ligands and herein describe their preclinical effectiveness for treating schizophrenia-like behaviors. JJ-3-45, JJ-3-42, and JJ-5-34 reduced amphetamine-stimulated hyperlocomotion, restored amphetamine-disrupted prepulse inhibition, improved social behavior, and novel object recognition memory in NMDA receptor hypofunctioning NR1-knockdown mice, and were essentially devoid of catalepsy. However, they decreased motivation in a breakpoint assay and did not promote reversal learning in MK-801-treated mice. Somewhat similar effects were observed with lorcaserin, a 5-HT2C agonist with potent 5-HT2B and 5-HT2A agonist activities, which is approved for treating obesity. Microdialysis studies revealed that both JJ-3-42 and lorcaserin reduced dopamine efflux in the infralimbic cortex, while only JJ-3-42 decreased it in striatum. Collectively, these results provide additional evidence that 5-HT2C receptors are suitable drug targets with fewer side effects, greater therapeutic selectivity, and enhanced efficacy for treating schizophrenia and related disorders than current APDs. Neuropsychopharmacology advance online publication, 12 April 2017; doi:10.1038/npp.2017.52

    An anxiety-like phenotype in mice selectively bred for aggression

    Get PDF
    Using selective bi-directional breeding procedures, two different lines of mice were developed. The NC900 line is highly reactive and attacks their social partners without provocation, whereas aggression in NC100 animals is uncommon in social environments. The enhanced reactivity of NC900 mice suggests that emotionality may have been selected with aggression. As certain forms of anxiety promote exaggerated defensive responses, we tested NC900 mice for the presence of an anxiety-like phenotype. In the open field, light-dark exploration, and zero maze tests, NC900 mice displayed anxiety-like responses. These animals were less responsive to the anxiolytic actions of diazepam in the zero maze than NC100 animals; diazepam also reduced the reactivity and attack behaviors of NC900 mice. The NC900 mice had reduced diazepam-sensitive GABAA receptor binding in brain regions associated with aggression and anxiety. Importantly, there was a selective reduction in levels of the GABAA receptor α2 subunit protein in NC900 frontal cortex and amygdala; no changes in α1 or γ2 subunit proteins were observed. These findings suggest that reductions in the α2 subunit protein in selected brain regions may underlie the anxiety and aggressive phenotype of NC900 mice. Since anxiety and aggression are comorbid in certain psychiatric conditions, such as borderline personality and posttraumatic stress disorder, investigations with NC900 mice may provide new insights into basic mechanisms that underlie these and related psychiatric conditions

    Distinct cortical and striatal actions of a β-arrestin-biased dopamine D2 receptor ligand reveal unique antipsychotic-like properties.

    Get PDF
    The current dopamine (DA) hypothesis of schizophrenia postulates striatal hyperdopaminergia and cortical hypodopaminergia. Although partial agonists at DA D2 receptors (D2Rs), like aripiprazole, were developed to simultaneously target both phenomena, they do not effectively improve cortical dysfunction. In this study, we investigate the potential for newly developed β-arrestin2 (βarr2)-biased D2R partial agonists to simultaneously target hyper- and hypodopaminergia. Using neuron-specific βarr2-KO mice, we show that the antipsychotic-like effects of a βarr2-biased D2R ligand are driven through both striatal antagonism and cortical agonism of D2R-βarr2 signaling. Furthermore, βarr2-biased D2R agonism enhances firing of cortical fast-spiking interneurons. This enhanced cortical agonism of the biased ligand can be attributed to a lack of G-protein signaling and elevated expression of βarr2 and G protein-coupled receptor (GPCR) kinase 2 in the cortex versus the striatum. Therefore, we propose that βarr2-biased D2R ligands that exert region-selective actions could provide a path to develop more effective antipsychotic therapies

    D2 Dopamine Receptor G Protein-Biased Partial Agonists Based on Cariprazine

    Get PDF
    Functionally selective G protein-coupled receptor ligands are valuable tools for deciphering the roles of downstream signaling pathways that potentially contribute to therapeutic effects versus side effects. Recently, we discovered both Gi/o-biased and β-arrestin2-biased D2 receptor agonists based on the Food and Drug Administration (FDA)-approved drug aripiprazole. In this work, based on another FDA-approved drug, cariprazine, we conducted a structure-functional selectivity relationship study and discovered compound 38 (MS1768) as a potent partial agonist that selectively activates the Gi/o pathway over β-arrestin2. Unlike the dual D2R/D3R partial agonist cariprazine, compound 38 showed selective agonist activity for D2R over D3R. In fact, compound 38 exhibited potent antagonism of dopamine-stimulated β-arrestin2 recruitment. In our docking studies, compound 38 directly interacts with S1935.42 on TM5 but has no interactions with extracellular loop 2, which appears to be in contrast to the binding poses of D2R β-arrestin2-biased ligands. In in vivo studies, compound 38 showed high D2R receptor occupancy in mice and effectively inhibited phencyclidine-induced hyperlocomotion. © 2019 American Chemical Society

    Altered Neurocircuitry in the Dopamine Transporter Knockout Mouse Brain

    Get PDF
    The plasma membrane transporters for the monoamine neurotransmitters dopamine, serotonin, and norepinephrine modulate the dynamics of these monoamine neurotransmitters. Thus, activity of these transporters has significant consequences for monoamine activity throughout the brain and for a number of neurological and psychiatric disorders. Gene knockout (KO) mice that reduce or eliminate expression of each of these monoamine transporters have provided a wealth of new information about the function of these proteins at molecular, physiological and behavioral levels. In the present work we use the unique properties of magnetic resonance imaging (MRI) to probe the effects of altered dopaminergic dynamics on meso-scale neuronal circuitry and overall brain morphology, since changes at these levels of organization might help to account for some of the extensive pharmacological and behavioral differences observed in dopamine transporter (DAT) KO mice. Despite the smaller size of these animals, voxel-wise statistical comparison of high resolution structural MR images indicated little morphological change as a consequence of DAT KO. Likewise, proton magnetic resonance spectra recorded in the striatum indicated no significant changes in detectable metabolite concentrations between DAT KO and wild-type (WT) mice. In contrast, alterations in the circuitry from the prefrontal cortex to the mesocortical limbic system, an important brain component intimately tied to function of mesolimbic/mesocortical dopamine reward pathways, were revealed by manganese-enhanced MRI (MEMRI). Analysis of co-registered MEMRI images taken over the 26 hours after introduction of Mn^(2+) into the prefrontal cortex indicated that DAT KO mice have a truncated Mn^(2+) distribution within this circuitry with little accumulation beyond the thalamus or contralateral to the injection site. By contrast, WT littermates exhibit Mn^(2+) transport into more posterior midbrain nuclei and contralateral mesolimbic structures at 26 hr post-injection. Thus, DAT KO mice appear, at this level of anatomic resolution, to have preserved cortico-striatal-thalamic connectivity but diminished robustness of reward-modulating circuitry distal to the thalamus. This is in contradistinction to the state of this circuitry in serotonin transporter KO mice where we observed more robust connectivity in more posterior brain regions using methods identical to those employed here
    corecore