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Abstract

Functionally selective G protein-coupled receptor ligands are valuable tools for deciphering the 

roles of downstream signaling pathways that potentially contribute to therapeutic effects versus 

side effects. Recently, we discovered both Gi/o-biased and β-arrestin2-biased D2 receptor agonists 

based on the Food and Drug Administration (FDA)-approved drug aripiprazole. In this work, 

based on another FDA-approved drug, cariprazine, we conducted a structure–functional selectivity 

relationship study and discovered compound 38 (MS1768) as a potent partial agonist that 

selectively activates the Gi/o pathway over β-arrestin2. Unlike the dual D2R/D3R partial agonist 

cariprazine, compound 38 showed selective agonist activity for D2R over D3R. In fact, compound 

38 exhibited potent antagonism of dopamine-stimulated β-arrestin2 recruitment. In our docking 

studies, compound 38 directly interacts with S1935.42 on TM5 but has no interactions with 

extracellular loop 2, which appears to be in contrast to the binding poses of D2R β-arrestin2-

biased ligands. In in vivo studies, compound 38 showed high D2R receptor occupancy in mice and 

effectively inhibited phencyclidine-induced hyperlocomotion.
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Graphical Abstract

INTRODUCTION

G protein-coupled receptors (GPCRs) are seven-transmembrane domain receptors1 that have 

been implicated in the pathophysiology of numerous human diseases including 

schizophrenia,2 Parkinson’s disease,3 attention-deficit disorders,4 and obesity.5 More than 

30% of current Food and Drug Administration (FDA) approved drugs target GPCRs. 1,6,7 

Historically, GPCR drug discovery has postulated that ligand engagement with a receptor 

could only lead to a single unique outcome.1 Under this simplified paradigm, partial and full 

agonists were classified as ligands that stimulated the recognized downstream signaling 

pathway, whereas antagonists were ligands that simply blocked the actions of agonists.8 

Current research, however, suggests that GPCR ligands can induce conformational changes 

that result in selective activation of distinct downstream signaling pathways.1, 7 This concept 

has been widely accepted by the academic and pharmaceutical communities and is termed 

biased signaling or functional selectivity.9–14

Functional selectivity in GPCR ligands has important potential clinical implications as it has 

been suggested that different signaling pathways contribute to various drug pharmacological 

profiles including both therapeutic actions and adverse effects.15–17 For example, carvedilol 

and metoprolol tartrate are both inverse agonists of cyclic adenosine monophosphate 

(cAMP) production at β2AR, but carvedilol has also been shown to possess phospho-

ERK1/2 activity, likely leading to the reduction in mortality observed in a clinical trial on 

patients with chronic heart failure.18,19 Another example includes PZM21, a potent Gi-

biased agonist of the μ-opioud-receptor (μOR) that was shown to efficiently reduce pain 

without causing lethal side effects, such as fatal respiratory depression and morphine-like 

reinforcing activity. In contrast, both of these side effects are observed alongside therapeutic 

analgesia when the unbiased μOR agonist morphine is administered.20 These findings have 

fueled great interest in the discovery of new functionally selective ligands for various 

GPCRs.13,21–36

Dopaminergic receptors are a subfamily of aminergic GPCRs that are highly expressed in 

the brain. Dopaminergic receptors are generally classified into subtypes as D1-like (D1 and 

D5) and D2-like (D2, D3, and D4). D2R is the most highly studied dopaminergic receptor due 

to its implication in neuropsychiatric diseases.37,38 Previously, we discovered both β-

arrestin2-biased and G protein-biased D2R agonists through investigation of the structure–
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functional selectivity relationship (SFSR) of the FDA-approved drug aripirazole.35,39–41 

Other groups have also reported multiple functionally selective D2 receptor agonists.
27–30,42–45 Among them, cariprazine and its 1,2,3,4-tetrahydroisoquinoline (THIQ) isosteres 

were reported to selectively activate the D2R Gi/o-mediated cAMP inhibition pathway over 

the phospho-ERK1/2 pathway.27 However, for these cariprazine analogues, there are no 

reports on ligand bias with regard to β-arrestin recruitment.

Cariprazine is an FDA-approved drug for the treatment of schizophrenia and bipolar mania 

in adults and is currently also under clinical investigation for the treatment of bipolar 

depression and major depressive disorder.46 Cariprazine, however, is also known to carry 

several side effects including extrapyramidal symptoms, indigestion, nausea, headache, and 

weight gain.47 A functionally selective cariprazine-biased D2R agonist has the potential to 

serve as a tool for dissecting the therapeutic and adverse effects of different downstream 

pathways, which may ultimately lead to improved therapeutics. In the present study, we 

conducted an SFSR study starting from the cariprazine scaffold and report the discovery of 

compound 38, a THIQ isostere of cariprazine, as a G protein-biased D2R partial agonist. 

Here, we present the design, synthesis, and biological characterization of compound 38 and 

its analogues.

RESULTS AND DISCUSSION

Discovery of Compound 16 as a G Protein-Biased Agonist.

We conducted an SFSR study on three regions of the cariprazine scaffold: (1) the left-hand 

side (LHS) 2,3-dichlorophenylpiperazinyl moiety, (2) the middle linker cyclohexylene ring 

moiety, and (3) the right-hand side (RHS) urea moiety, including a few known compounds in 

ref 26. The syntheses of 9 (cariprazine) and the designed analogues, 10–12, 15 and 16 are 

outlined in Schemes 1 and 2. The Boc-protected ethyl 2-(trans-4-aminocyclohexyl)acetate 1 
was prepared by esterification of commercially available 2-(trans-4-aminocyclohexyl)acetic 

acid, followed by protection of the amino group with di-tert-butyl dicarbonate. Lithium 

borohydride-mediated reduction of the methyl ester provided the alcohol 2. After activation 

of the hydroxyl group, the resulting reactive methanesulfonate ester intermediate was 

converted into the cyano compound 3. Diisobutylaluminium hydride (DIBAL-H)-mediated 

reduction of the cyano group afforded the trans-aldehyde 4. The cis-aldehyde 8 was 

synthesized from 2-(cis-4-aminocyclohexyl)acetic acid using the same procedures described 

above for the preparation of compound 4. Compound 10 was obtained via reductive 

amination of 4 and 1-(2,3-dichlorophenyl)piperazine in the presence of sodium 

triacetoxyborohydride. Boc-group deprotection under acidic conditions afforded compound 

11, which was subsequently converted to 9 by dimethylurea formation with 

dimethylcarbamoyl chloride. Compound 12 was prepared from the cis-aldehyde 8 using the 

same procedures as compound 9. Compound 15 was synthesized using a 5-carbon linker 

moiety. Boc protection of commercially available 5-aminopentanol gave 13. Activation of 

the free hydroxyl group followed by substitution with 2,3-dichlorophenylpiperazine yielded 

14. Boc deprotection followed by dimethylurea formation afforded compound 15 (Scheme 

1). Compound 16 was prepared from the cis-aldehyde 4 and 1,2,3,4-tetrahydroisoquinoline 

using the same procedures as compound 9 (Scheme 2).
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All of these synthesized compounds were then evaluated for their effects on D2R Gi/o-

mediated cAMP inhibition and β-arrestin2 recruitment. The D2R Gi/o-mediated cAMP 

inhibition assay measures inhibition of isoproterenol-stimulated cAMP production via the 

Gi/o-coupled signaling pathway, whereas the D2R-mediated β-arrestin2 translocation Tango 

assay measured the recruitment of β-arrestin2 to D2R.41,48 Quinpirole, a full D2R agonist, 

was used as a balanced positive control in both assays (Gi/o: EC50 = 1.8 nM, pEC50 = 8.74 

± 0.08; β-arrestin2: EC50 = 2.7 nM, pEC50 = 8.57 ± 0.10). The potency (EC50) and efficacy 

(Emax) in both pathways for each compound in this series are displayed in Table 1.

Although compound 9 was reported to be functionally selective for the cAMP (Gi/o-protein) 

pathway over the ERK1/2 phosphorylation pathway,27 this compound did not show 

significant bias for the Gi/o pathway (EC50 = 0.4 nM; Emax = 70%) over the β-arrestin2 

pathway (EC50 = 0.6 nM; Emax = 66%). Modification of the dimethylurea group to a tert-
butyl carbamate (10) drastically reduced the potencies for both the Gi/o (35-fold) and β-

arrestin2 (15-fold) pathways, while slightly increasing the efficacies to approximately 75% 

of the maximal responsiveness in both pathways. Truncation of the dimethylurea group to 

the primary amino group (11) did not obviously change either potency or efficacy for the 

Gi/o pathway. Compared to 9, compound 11 displayed decreased potency (3-fold) and 

retained almost equal efficacy in the β-arrestin2 recruitment assay, suggesting that a 

positively charged amino group in this region is detrimental to potency in β-arrestin2 

recruitment. Switching the trans-1,4-cyclohexylene of 9 to a cis-1,4-cyclohexylene moiety 

(12) resulted in a significant decrease in the potency and efficacy in both the Gi/o and β-

arrestin2 pathways (Gi/o: EC50 = 3 nM; Emax = 48%; β-arrestin2: EC50 = 12 nM; Emax = 

37%). Replacement of the trans-1,4-cyclohexylene group-containing linker to a more 

flexible 5-carbon chain led to a significant decrease in potency (17-fold) and efficacy (Emax 

= 24%) for β-arrestin2 recruitment and also an obvious decrease in potency (18-fold) and 

efficacy (Emax = 29%) for the Gi/o pathway. Replacement of the 2,3-

dichlorophenylpiperazine to its isostere 1,2,3,4-tetrahydroisoquinoline (THIQ) has been 

explored in D2R and D3R studies.27,49 The THIQ compound 16 displayed significantly 

reduced potency and efficacy in both pathways (Gi/o: EC50 = 12 nM; Emax = 60%; β-

arrestin2: EC50 = 69 nM; Emax = 22%). However, 16 also displayed bias toward Gi/o 

signaling over β-arrestin2 recruitment with a bias factor of 11 relative to quinpirole.

Given the promising functional selectivity of 16, we opted to focus our SFSR campaign on 

the THIQ series by exploring three regions of this scaffold: the LHS 1,2,3,4-

tetrahydroisoquinoline moiety, the middle linker cyclohexylene ring moiety, and the RHS 

urea moiety.

SFSR of the RHS of the THIQ Scaffold.

We explored a series of compounds (17–25) with different sized urea, carbamate, and amide 

moieties at the RHS. These compounds were synthesized according to the procedures for the 

preparation of 16, as outlined in Scheme 2. The results from both cAMP and β-arrestin2 

assays are summarized in Table 2.

Shen et al. Page 4

J Med Chem. Author manuscript; available in PMC 2020 May 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Increasing the bulkiness of the dimethylurea moiety (16) to diethylurea (17) or diisopropyl 

urea (18) significantly reduced the potencies by 3–5-fold, while maintaining the maximal 

responsiveness for both the Gi/o and β-arrestin2 recruitment pathways. Compared to 16, a 

pyrrolidine carboxamide group (19) retained similar potency and increased the efficacy 

(Gi/o: EC50 = 14 nM; Emax = 66%; β-arrestin2: EC50 = 88 nM; Emax = 42%) in both 

pathways. This modification, however, did not improve the bias profile toward Gi/o protein 

activity. For the carbamate analogues, the tert-butyl group (20) showed better Gi/o pathway 

activation (EC50 = 33 nM; Emax = 59%) than isopropyl (21) (EC50 = 74 nM; Emax = 49%) 

and ethyl groups (EC50 = 144 nM; Emax = 53%). Similarly, the tert-butyl group (20) also 

demonstrated better activity in the β-arrestin2 recruitment assay (EC50 = 195 nM; Emax = 

52%) than isopropyl (21) (EC50 = 238 nM; Emax = 26%) and ethyl (22) groups (EC50 = 636 

nM; Emax = 22%). For the amide RHS, benzamide (23) was more potent in inducing both 

Gi/o-mediated cAMP inhibition (EC50 = 8 nM; Emax = 62%) and β-arrestin2 recruitment 

(EC50 = 65 nM; Emax = 50%) than propionamide (24) and acetamide (25). Albeit rather 

weak agonists for the Gi/o pathway (for 24: EC50 = 132 nM; Emax = 33%; for 25: EC50 = 54 

nM; Emax = 22%), both propionamide (24) and acetamide (25) showed diminished efficacy 

in β-arrestin2 recruitment (EC50 not calculated; Emax < 10%). Consequently, these smaller 

amide moieties (24 and 25) confer apparent functional selectivity toward the Gi/o pathway.

Overall, this SFSR study with the urea, carbamate, and amide moieties of the THIQ scaffold 

did not provide a significantly superior functionally selective D2R agonist compared to 

compound 16. Modifications that lead to improved activities in the Gi/o pathway were 

always accompanied with improved β-arrestin2 recruitment. To improve the functional 

selectivity and efficacy of this series in the Gi/o pathway, we retained the dimethylurea 

moiety of compound 16 for the following studies on the middle linkers and LHS moieties.

SFSR of the Middle Linker of the THIQ Scaffold.

To determine effects of the middle linker on D2R functional selectivity, we explored 

compounds 26, 28, 30, and 32. The synthetic routes are summarized in Scheme 3. Their 

biological results are outlined in Table 3.

Compound 26 was synthesized according to the same procedures for the preparation of 16 
from the cis- aldehyde 8. The preparation of compound 28 started from compound 2. The 

activation of the hydroxyl group of 2 with methanesulfonyl chloride, followed by 

substitution with 1,2,3,4-tetrahydroisoquinoline, provided the Boc-protected intermediate 

27. Boc deprotection and subsequent urea formation yielded 28. Compound 30 was 

synthesized following the protocols for the preparation of 28 from the alcohol intermediate 

29, which was prepared by selective Boc protection of the commercially available 2-(4-

aminophenyl)-ethan-1-ol. Similarly, compound 32 was synthesized using the same route as 

the preparation of 28 from the alcohol 13 (Scheme 3).

Replacement of the trans-1,4-cyclohexylene ring of 16 with a cis-1,4-cyclohexylene group 

(26) significantly decreased potency (22-fold), while maintaining efficacy (Emax = 58%) for 

the Gi/o pathway. Interestingly, compound 26 showed very low activity for β-arrestin2 

recruitment (EC50 > 1000 nM), resulting in our inability to calculate a bias factor for this 
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compound. However, 26 still showed low potency for the Gi/o pathway (EC50 = 259 nM), 

indicating weak G protein-bias. Incorporation of a short linker (28), a rigid aromatic linker 

(30), or a flexible 5-C chain linker (32) resulted in compounds that were all inactive in both 

the cAMP inhibition and β-arrestin2 recruitment assays. Taken together, these findings 

suggest that the central linker plays an important role in the functional potency and efficacy 

of this scaffold in both the Gi/o and β-arrestin2 signaling pathways.

SFSR of the LHS of the THIQ Scaffold.

We next explored compounds 33–43 to study the effects of phenyl substituents on D2R 

functional selectivity. Compounds 33–43 were prepared using the same synthetic routes for 

16, starting from the appropriately substituted 1,2,3,4-tetrahydroisoquinoline precursor 

(Scheme 4). The biological assay data are summarized in Table 4.

Given that cariprazine featured a dichloro substitution pattern on its LHS, we designed and 

synthesized compound 33 bearing a 5,6-dicholoro-substituted THIQ. Similar to cariprazine, 

compound 33 was not functionally selective in the two signaling pathways. Notably, 

however, this compound exhibited higher efficacy than cariprazine for both the Gi/o (Emax = 

116%) and β-arrestin2 (Emax = 90%) pathways. In fact, its Gi/o signaling efficacy was even 

higher than that of the control compound quinpirole (Emax = 100%), indicating 

superagonism. A 6,7-dioxole on the THIQ (34) did not show significant Gi/o pathway 

selectivity. Because of the enhanced maximal responsiveness of both signaling pathways to 

the 5,6-dichloro substituent (33), we explored the effects of monochloro substituents at the 

5-, 6-, 7-, and 8-positions on the THIQ. Similar to 33, the 5-chloro compound 35 was a 

balanced near-full agonist for both the Gi/o signaling pathway (Emax = 95%) and β-arrestin2 

recruitment (Emax = 92%). A monochloro substituent at the 7-position (37) also resulted in a 

balanced effect in both pathways, however, a 6- or 8-chloro substituent on the THIQ moiety 

led to biased partial agonists for activating Gi/o signaling. Although the functional selectivity 

of 36 (6-chloro) was moderate, compound 38 (8-chloro) displayed enhanced bias toward 

activating the Gi/o signaling pathway (EC50 = 11 nM; Emax = 62%) over β-arrestin2 

recruitment (EC50 = 40 nM; Emax = 11%) with a bias factor of 14. We next explored the 

methyl (39), bromo (40), fluoro (41), trifluoromethyl (42), and methoxy (43) substituents at 

the 8-position. Albeit with lower functional potencies (27–86 nM) for the Gi/o signaling 

pathway than 38, all of these compounds appeared to be partial agonists for stimulating Gi/o 

signaling. Taken together, our results suggest that the substituents of the LHS 1,2,3,4-

tetrahydroisoquinoline moiety play a critical role in modulating functional selectivity of 

D2R. The 8-chloro substituent on the THIQ moiety provided a potent and Gi/o-biased 

compound, 38.

Evaluation of Gi/o Protein-Biased D2R Agonist 38 in Orthogonal Assays.

To further confirm the observed signaling bias, which has been shown to depend on cell 

background and readout.14,50 we tested 38 in a bioluminescence resonance energy transfer 

(BRET)-based assay51 using quinpirole as the control. As demonstrated in Figure 1A, in 

HEK 293T cells co-expressing D2R C-terminal tagged renilla luciferase (Rluc), a Venus-

tagged β-arrestin2, and G protein-coupled receptor kinase 2 (GRK2), compound 38 
displayed no activity for D2R-mediated β-arrestin2 recruitment compared to quinpirole 
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(EC50 = 115 nM; Emax = 100%). Next, to confirm compound 38 is an agonist in the D2R G 

protein pathway, we tested compound 38 in a Gαi1–Gγ2 dissociation BRET-based assay52 

using quinpirole as a control. In this assay, compound 38 showed potent partial agonist 

activity (EC50 = 0.40 nM; Emax = 47%) compared to quinpirole (EC50 = 2.4 nM; Emax = 

100%) (Figure 1B). Taken together, BRET-based orthologous assay platforms for either G 

protein activation or β-arrestin2 recruitment confirmed that compound 38 is a G protein-

biased D2R partial agonist.

Evaluation of Gi/o Protein-Biased D2R Agonist 38 in D2R β-Arrestin Antagonist Mode and in 
D3R Functional Assays.

Considering that compound 38 is a Gi/o protein-biased partial agonist showing no activity 

for D2R β-arrestin2 activity, we examined the antagonist activity of 38 for dopamine (DA)-

induced D2R β-arrestin2 recruitment. Different from dopamine, compound 38 did not show 

agonist activity toward β-arrestin2 recruitment (Figure 2A). However, similar to clozapine, 

38 exhibited potent antagonism in blocking dopamine-stimulated β-arrestin2 recruitment 

(Figure 2A).

Because cariprazine is a D2R/D3R dual partial agonist, we also tested whether the 

functionally selective D2R partial agonist, compound 38, is also a D3R agonist. As 

demonstrated in Figure 2B,C, compound 38 acts as a selective agonist at D2R over D3R, 

showing no agonist activity in D3R Gi/o-mediated cAMP inhibition assay (Figure 2B) or β-

arrestin2 recruitment assay (Figure 2C).

In Silico Studies.

We next sought to explore how these findings from our SFSR campaign fit into the existing 

paradigms for biased signaling at D2R. To do this, we docked cariprazine, 16, and 38 to a 

model based on the co-crystal structure of D2R in the complex with risperidone (PDB: 

6CM4).38 Because antagonists, such as risperidone, may stabilize different receptor 

conformations compared to agonists, we first compared this model to that of a previous D2R 

model from the literature that successfully modeled functional selectivity in D2R agonists.41 

The all-atom binding site root-mean-square deviation (RMSD) between our present model 

and this previously reported D2R model was 0.74 Å,41 indicating a high degree of similarity 

between the atom arrangements lining the binding pockets of both structures (Figure 3A).

Cariprazine docked to D2R revealed key binding pocket interactions including a salt bridge 

interaction between cariprazine’s protonated piperazinyl nitrogen and the conserved 

D1143.32 residue (2.52 Å) and a close edge-to-face π interaction between cariprazine’s LHS 

dichlorophenyl entity and F3906.52 (2.89 Å, Figure 3B). Notably in our pose, the LHS 

dichlorophenyl entity is oriented upward and toward TM5, such that the 3-chloro group can 

form a hydrogen bond with S1935.42 (2.52 Å), which is a residue found to be important for 

D2R Gi/o-dependent signaling.41 Furthermore, the 3-chloro appears to form an n–π 
interaction with F1895.38, and the 2-chloro group is pointed toward I184EL2 (4.70 Å), which 

is a residue previously implicated in D2R β-arrestin2 recruitment efficacy.41,45,53 Taken 

together, cariprazine’s binding pose appears to be consistent with its balanced agonist 

activity (Figure 3B).
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By contrast, D2R G protein-biased compounds 16 (Figure 3C) and 38 (Figure 3D) appear to 

dock deeper in the orthosteric binding site, lacking clear interactions with I184EL2 and 

engaging TM5 further via strict steric constraints, which has previously been shown to play 

an important role in receptor activation and G protein signaling.54 Specifically, the chloro 

substitution of 38 is able to directly interact with S1935.42 on TM5 (2.07 Å). Given previous 

findings that ligand engagement with TM5 serines is critical for G protein signaling at D2R,
41 this binding pose suggests that the TM5–LHS chloro interaction may contribute to 38’s 

dramatic increase in Gi/o bias compared to 16, which by comparison has a weaker 

interaction with TM5. These docking poses suggest that the selective engagement with TM5 

over EL2 may be important for the D2R Gi/o-bias of compounds 16 and 38, which is 

consistent with mechanisms previously proposed in the literature.41

Receptor Occupancy and Behavioral Studies in Mice.

To evaluate the in vivo D2R target engagement of compound 38, we implemented a 

radioactive competitive assay to assess the displacement of [3H]-raclopride in mouse 

striatum and cerebellum.55 Compound 38 dose-dependently bound to the D2R in mouse 

striatum and cerebellum, with full receptor occupancy observed at 32 mg/kg intravenous 

dose (Figure 4). The high D2R target engagement of 38 encouraged us to examine the in 

vivo pharmacological effects of this ligand on supressing the NMDA receptor antagonist 

phencyclidine (PCP) in a PCP-stimulated hyperlocomotion open field test. Compound 38 
significantly reduced PCP-induced hyperlocomotion at 1 mg/kg. At an elevated dose of 3.5 

mg/kg, 38 almost completely suppressed the induced hyperlocomotion (Figure 5). It remains 

unclear whether the suppression of hyperlocomotor activity is due to compound 38’s G 

protein-biased agonism or antagonism in this model of high dopamine efflux. Taken 

together, compound 38 was efficacious in vivo and may serve as a potential in vivo tool 

compound for elucidating the role of G protein-mediated D2R signaling.

CONCLUSIONS

In summary, we designed and synthesized a series of cariprazine analogues and evaluated 

them in cAMP accumulation and β-arrestin2 recruitment assays. Our initial SFSR study 

revealed compound 16, bearing a THIQ moiety, which exhibited bias for activating Gi/o 

signaling over β-arrestin2 pathway with a bias factor of 11. Further optimization of 16 led to 

the discovery of compound 38, which displayed an enhanced functional selectivity for the 

Gi/o signaling pathway β-arrestin2 recruitment with a bias factor of 14. Orthologous BRET 

assays were used to confirm that 38 was a G protein-biased partial agonist. Unlike 

cariprazine, which was a dual partial agonist of D2R/D3R, compound 38 showed no agonist 

activity at D3R but demonstrated partial Gi/o protein agonist activity at D2R. Compound 38 
also exhibited potent D2R antagonism of dopamine-stimulated β-arrestin2 recruitment. 

Docking studies suggested that both a TM5–LHS chloro interaction and the resulting 

scaffold separation from EL2 could contribute to 38’s high functional selectivity in the Gi/o 

pathway. Finally, compound 38 was assessed in an in vivo receptor occupancy assay and a 

psychotomimetic-induced hyperlocomotion assay in rodents. Compound 38 showed high in 

vivo D2R target engagement as well as dose-dependent inhibition of PCP-induced 

hyperlocomotion in mice. Taken together, compound 38 is a highly Gi/o-biased D2R partial 
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agonist with the potential to serve as a tool compound for elucidating the role of G protein-

mediated D2R signaling in pathophysiological systems.

EXPERIMENTAL SECTION

Chemistry General Procedures.

High-performance liquid chromatography (HPLC) spectra for all compounds were acquired 

using an Agilent 1200 series system with a diode array detector. Chromatography was 

performed on a 2.1 × 150 mm2 Zorbax 300SB-C18 5 μm column with water containing 

0.1% formic acid as solvent A and acetonitrile containing 0.1% formic acid as solvent B at a 

flow rate of 0.4 mL/min. The gradient program was as follows: 1% B (0–1 min), 1–99% B 

(1–4 min), and 99% B (4–8 min). High-resolution mass spectra (HRMS) data were acquired 

in a positive ion mode using an Agilent G1969A API-TOF with an electrospray ionization 

(ESI) source. Nuclear magnetic resonance (NMR) spectra were acquired on either a Bruker 

DRX-600 spectrometer (600 MHz 1H) or a Bruker Avance-III 800 MHz spectrometer (201 

MHz 13C). Chemical shifts are reported in ppm (δ). Preparative HPLC was performed on 

Agilent Prep 1200 series with UV detector set to 254 nm. Samples were injected into a 

Phenomenex Luna 250 × 30 mm2, 5 μM C18 column at room temperature (rt). The flow rate 

was 40 mL/min. A linear gradient was used with 10% (or 50%) of MeOH (A) in H2O (with 

0.1% TFA) (B) to 100% of MeOH (A). HPLC was used to establish the purity of target 

compounds. All final compounds had >95% purity using the HPLC methods described 

above. All final compounds are characterized as trifluoroacetic acid salt form, except 

compound 38, of which form is free base.

Methyl trans-4-((tert-Butoxycarbonyl)amino)cyclohexane-1-carboxylate (1).

To a solution of 4-aminocyclohexane-1-carboxylic acid HCl salt (5 g, 27.9 mmol) in 

methanol (100 mL) was added thionyl chloride (7.5 mL, 103.5 mmol) at 0 °C. The resulting 

solution was warmed to rt and stirred for 18 h. Solvent removal under reduced pressure 

yielded the crude product as an off-white solid, which was used in the next step without 

further purification.

To a solution of the crude intermediate in dichloromethane (100 mL) was added 

triethylamine (6 mL, 43 mmol) at 0 °C, followed by di-tert-butyl dicarbonate (8.6 g, 39.5 

mmol). The reaction was stirred overnight before being quenched with saturated aqueous 

sodium bicarbonate. The mixture was extracted with dichloromethane (3 × 50 mL). 

Combined organic phase was dried over anhydrous sodium sulfate and concentrated under 

reduced pressure. The resulting residue was purified by silica gel flash chromatography 

(elution with hexane/EtOAc = 1:1) to give compound 1 as white powder (6.84 g, 95%). 1H 

NMR (600 MHz, CD3OD) δ 3.67 (s, 3H), 3.33–3.25 (m, 1H), 2.36–2.16 (m, 1H), 2.03–1.88 

(m, 4H), 1.45–1.47 (m, 11H), 1.31–1.16 (m, 2H).

tert-Butyl (trans-4-(Hydroxymethyl)cyclohexyl)carbamate (2).

To a solution of methyl trans-4-((tert-butoxycarbonyl)amino)cyclohexane-1-carboxylate 

(6.84, 26.5 mmol) in diethyl ether (120 mL) and methanol (0.6 mL) was added lithium 

borohydride (1.83 g, 84 mmol) in portions, followed by dropwise addition of methanol (3 
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mL). The resulting mixture was stirred for 45 min before being quenched with methanol and 

concentrated under reduced pressure. The resulting residue was treated with 1% aqueous 

sodium hydroxide and extracted with ethyl acetate (3 × 60 mL). The combined organic 

phase was dried over anhydrous sodium sulfate and concentrated under reduced pressure. 

The resulting residue was purified with silica gel flash chromatography (elution with 

MeOH/DCM = 0–10%) to give the title compound as white solid (5.8 g, 95%). 1H NMR 

(600 MHz, CD3OD) δ 3.37 (dd, J = 6.4, 1.3 Hz, 2H), 3.31–3.20 (m, 1H), 1.98–1.90 (m, 2H), 

1.89–1.81 (m, 2H), 1.52–1.36 (m, 10H), 1.23–1.16 (m, 2H), 1.09–0.97 (m, 2H).

tert-Butyl (trans-4-(Cyanomethyl)cyclohexyl)carbamate (3).

To the solution of tert-butyl (trans-4-(hydroxymethyl)cyclohexyl)carbamate (4.34 g, 18.9 

mmol) and triethylamine (5.3 mL, 37.8 mmol) in dichloromethane (150 mL) was added 

methanesulfonyl chloride (2.2 mL, 28.3 mmol) dropwise at 0 °C. The resulting mixture was 

stirred for 2 h before being quenched with water. The mixture was extracted with 

dichloromethane (3 × 60 mL). Combined organic phase was dried over sodium sulfate. After 

filtration, the solvent was removed under reduced pressure to provide the crude intermediate, 

which was used in next step without purification.

The crude material and potassium cyanide (3.6 g, 55.2 mmol) were mixed in dimethyl 

sulfoxide (60 mL). The mixture was stirred for 5 h at 100 °C, before being cooled to room 

temperature. After being cooled to rt, the reaction was diluted with water and extracted with 

ethyl acetate (3 × 100 mL). Combined organic phase was dried over sodium sulfate. The 

concentrated residue was purified by silica gel column (elution with hexane/EtOAc = 1:1) to 

yield the title compound as gray solid (4.3 g, 96%). 1H NMR (600 MHz, CD3OD) δ 3.32–

3.25 (m, 1H), 2.40 (d, J = 6.5, 1.4 Hz, 2H), 1.96 (d, J = 10.4 Hz, 2H), 1.89 (d, J = 11.1 Hz, 

2H), 1.69–1.58 (m, 1H), 1.45 (s, 9H), 1.28–1.09 (m, 4H).

tert-Butyl (trans-4-(2-Oxoethyl)cyclohexyl)carbamate (4).

To a solution of tert-butyl (trans-4-(hydroxymethyl)cyclohexyl)carbamate (1.2 g, 5 mmol) in 

dichloromethane (20 mL), was added diisobutylaluminium hydride (1 M in hexane, 15 mL) 

at −78 °C. The resulting solution was stirred for 2 h before being quenched with saturated 

aqueous solution of Rochelle’s salt. The mixture was warmed to rt slowly and stirred 

vigorously until two phases were visualized. The organic phase was concentrated under 

reduced pressure. The resulting residue was purified by silica gel column to give the title 

compound as pale yellow solid (960 mg, 76%). 1H NMR (600 MHz, CDCl3) δ 9.75 (d, J = 

2.3 Hz, 1H), 4.38 (s, 1H), 3.47–3.30 (m, 1H), 2.32 (dd, J = 6.8, 2.2 Hz, 2H), 2.00 (d, J = 

10.7 Hz, 2H), 1.90–1.74 (m, 3H), 1.43 (s, 9H), 1.15–1.08 (m, 4H).

tert-Butyl (cis-4-(Hydroxymethyl)cyclohexyl)carbamate (6).

Compound 6 was prepared according to the same procedures as preparing compound 2 
(yield 95%). 1H NMR (600 MHz, CD3OD) δ 3.56 (m, 1H), 3.43 (d, J = 6.4 Hz, 2H), 1.65–

1.53 (m, 8H), 1.43 (s, 9H), 1.41–1.34 (m, 1H).
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tert-Butyl (cis-4-(Cyanomethyl)cyclohexyl)carbamate (7).

Compound 7 was prepared according to the same procedures as preparing compound 3 
(yield 96%). 1H NMR (600 MHz, CD3OD) δ 3.68–3.54 (m, 1H), 2.41 (dd, J = 7.2, 3.6 Hz, 

2H), 1.83–1.55 (m, 9H), 1.44 (s, 9H).

tert-Butyl ((1s,4s)-4-(2-Oxoethyl)cyclohexyl)carbamate (8).

Compound 8 was prepared according to the same procedures as preparing compound 4 
(yield 80%). 1H NMR (600 MHz, CDCl3) δ 9.75 (d, J = 2.2 Hz, 1H), 4.61 (s, 1H), 3.77–3.65 

(m, 1H), 2.37 (dd, J = 6.9, 2.1 Hz, 2H), 2.12–1.97 (m, 1H), 1.66–1.56 (m, 6H), 1.44 (s, 9H), 

1.29–1.18 (m, 2H).

3-(trans-4-(2-(4-(2,3-Dichlorophenyl)piperazin-1-yl)ethyl)cyclohexyl)-1,1-dimethylurea (9).

To the solution of Compound 11 (20 mg, 0.03 mmol) and triethylamine (12 mg, 0.12 mmol) 

in dichloromethane (2 mL) was added dimethylcarbamoyl chloride (7 mg, 0.06 mmol). The 

mixture was stirred for few minutes before being condensed. The resulting residue was 

purified by preparative HPLC (10–100% methanol/0.1% TFA in H2O) to give the title 

compound as white powder (8 mg, 43%). 1H NMR (600 MHz, CD3OD) δ 7.37–7.29 (m, 

2H), 7.24–7.18 (m, 1H), 3.73–3.67 (m, 2H), 3.603.46 (m, 3H), 3.36–3.24 (m, 4H), 3.18–

3.04 (m, 2H), 2.90 (s, 6H), 1.97–1.91 (m, 2H), 1.92–1.84 (m, 2H), 1.77–1.66 (m, 2H), 1.43–

1.25 (m, 3H), 1.17 (dd, J = 12.4, 3.5 Hz, 2H). MS (ESI) m/z 427.4 [M + H]+.

tert-Butyl (trans-4-(2-(4-(2,3-Dichlorophenyl)piperazin-1-yl)ethyl)cyclohexyl)carbamate (10).

To a solution of 1-(2,3-dichlorophenyl)piperzine (46.2 mg, 0.2 mmol) and aldehyde 4 (48.2 

mg, 0.2 mmol) in chloromethane (4 mL) was added sodium triacetoxyborohydride (84.8 mg, 

0.4 mmol) in portions. The resulting mixture was stirred overnight before being quenched 

with saturated aqueous sodium bicarbonate. The resulting mixture was extracted with 

dichloromethane (3 × 10 mL). The combined organic phase was dried over sodium sulfate 

and concentrated under reduced pressure. The resulting residue was purified by preparative 

HPLC (10–100% methanol/0.1% TFA in H2O) and lyophilized to give the title compounds 

as white powder (85.5 mg, yield 75%). 1H NMR (600 MHz, CD3OD) δ 7.36–7.30 (m, 2H), 

7.20–7.16 (m, 1H), 3.73–3.68 (m, 2H), 3.59–3.52 (m, 2H), 3.36–3.25 (m, 5H), 3.21–3.09 

(m, 2H), 1.99–1.91 (m, 2H), 1.89–1.82 (m, 2H), 1.77–1.67 (m, 2H), 1.46 (s, 9H), 1.39–1.32 

(m, 1H), 1.27–1.09 (m, 4H). MS (ESI) m/z 456.7 [M + H]+.

trans-4-(2-(4-(2,3-Dichlorophenyl)piperazin-1-yl)ethyl)-cyclohexan-1-amine (11).

Compound 10 (60 mg, 0.1 mmol) was treated with dichloromethane (1 mL) and 

trifluoroacetic acid (1 mL) for 1 h. After removal of the solvents, the resulting residue was 

purified by preparative HPLC (10–100% methanol/0.1% TFA in H2O) to give the title 

compound as white powder (35.5 mg, 58%). 1H NMR (600 MHz, CD3OD) δ 7.37–7.29 (m, 

2H), 7.18 (dd, J = 7.5, 2.1 Hz, 1H), 3.71 (d, J = 12.1 Hz, 2H), 3.56 (d, J = 13.2 Hz, 2H), 

3.38–3.23 (m, 5H), 3.17–3.04 (m, 2H), 2.12–2.04 (m, 2H), 2.00–1.92 (m, 2H), 1.81–1.70 

(m, 2H), 1.44 (qd, J = 12.5, 3.5 Hz, 3H), 1.25–1.18 (m, 2H). MS (ESI) m/z 356.2 [M + H]+.
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3-(cis-4-(2-(4-(2,3-Dichlorophenyl)piperazin-1-yl)ethyl)cyclohexyl)-1,1-dimethylurea (12).

To a solution of 1-(2,3-dichlorophenyl)piperzine (23.1 mg, 0.1 mmol) and compound 8 (24.1 

mg, 0.1 mmol) in dichloromethane (2 mL) was added sodium triacetoxyborohydride (42.4 

mg, 0.2 mmol) in portions. The resulting mixture was stirred overnight before being 

quenched with saturated aqueous sodium bicarbonate. The mixture was extracted with 

dichloromethane (3 × 5 mL). The combined organic phase was dried over sodium sulfate 

and concentrated under reduced pressure. The residue was treated with dichloromethane (1 

mL) and trifluoroacetic acid (1 mL) for 1 h. After the solvent was removed under reduced 

pressure, the resulting residue was used in the next step without further purification. The 

crude material was dissolved in dichloromethane (2 mL). To the resulting solution was 

added triethylamine (50 mg, 0.5 mmol). After the solution was stirred for a few minutes, 

dimethylcarbamoyl chloride (22 mg, 0.2 mmol) in dichloromethane (1 mL) was added 

dropwise. After the resulting solution was stirred for 1 h, the mixture was concentrated 

under reduced pressure. The resulting residue was purified by preparative HPLC (10–100% 

methanol/0.1% TFA in H2O) to give the title compound as white powder (25.3 mg, yield 

47%). 1H NMR (600 MHz, CD3OD) δ 7.39–7.26 (m, 2H), 7.22–7.16 (m, 1H), 3.77–3.65 

(m, 2H), 3.61–3.51 (m, 2H), 3.39–3.24 (m, 5H), 3.20–3.10 (m, 2H), 2.93 (s, 6H), 1.89–1.80 

(m, 2H), 1.73–1.60 (m, 7H), 1.58–1.46 (m, 2H). MS (ESI) m/z 427.5 [M + H]+.

3-(5-(4-(2,3-Dichlorophenyl)piperazin-1-yl)pentyl)-1,1-dimethylurea (15).

To a solution of 13 (203 mg, 1 mmol) and triethylamine (200 mg, 2 mmol) in 

dichloromethane (10 mL) was added methanesulfonyl chloride (137.4 mg, 1.2 mmol) 

dropwise at 0 °C. The resulting solution was stirred for 2 h at rt before being quenched with 

1 mL of saturated aqueous sodium bicarbonate. The mixture was extracted with 

dichloromethane and washed with water. The organic phase was dried over anhydrous 

sodium sulfate, filtered, and concentrated under reduced pressure. The resulting residue was 

dissolved in acetonitrile (10 mL) before potassium carbonate (414.6 mg, 3 mmol) and 1-

(2,3-dichlorophenyl)piperzine (231 mg, 1 mmol) were added successively. The mixture was 

refluxed overnight before being diluted with 10 mL of water. After being cooled to rt, the 

mixture was extracted with ethyl acetate (3 × 10 mL). The combined organic phase was 

dried over anhydrous sodium sulfate and concentrated under reduced pressure. The resulting 

residue was purified by silica gel column (CH3OH/DCM, 0–10%) to give compound 14 (50 

mg, yield 12%). Compound 14 was treated with trifluoroacetic acid (1 mL) and 

dichloromethane (2 mL) for 3 h at rt. The reaction was condensed under reduced pressure. 

The resulting residue was used for next step without further purification. To a solution of the 

residue above and triethylamine (40 mg, 0.4 mmol) in dichloromethane (2 mL), was added 

dimethylcarbamoyl chloride (16.1 mg, 0.15 mmol). The mixture was stirred for 1 h before 

being concentrated under reduced pressure. The resulting residue was purified by preparative 

HPLC (10–100% methanol/0.1% TFA in H2O) to give the title compound as a white powder 

(20 mg, yield 33%). 1H NMR (600 MHz, CD3OD) δ 7.40–7.25 (m, 2H), 7.24–7.17 (m, 1H), 

3.71 (d, J = 12.1 Hz, 2H), 3.55 (d, J = 13.1 Hz, 2H), 3.36–3.28 (m, 2H), 3.27–3.23 (m, 2H), 

3.22–3.13 (m, 4H), 2.91 (s, 6H), 1.89–1.80 (m, 2H), 1.65–1.53 (m, 2H), 1.45 (t, J = 7.3 Hz, 

2H). MS (ESI) m/z 387.4 [M + H]+.
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General Procedure for Preparing 16–19, 21–25.

Compound 20 (212 mg, 0.45 mmol) was treated with trifluoroacetic acid (10 mL) and 

dichloromethane (10 mL) for 3 h at rt. The solution was concentrated under reduced 

pressure. The resulting residue was dissolved in dichloromethane (9 mL). To the solution 

was added triethylamine (404 mg, 4.0 mmol). The mixture was equally divided into nine 

portions. To each portion was added the corresponding acyl chloride or anhydride (0.1 

mmol, 2 equiv). The resulting mixture was stirred overnight, followed by concentration 

under reduced pressure. The resulting residue was purified by preparative HPLC (10–100% 

methanol/0.1% TFA in H2O) to give the title compound as a white powder.

3-(trans-4-(2-(3,4-Dihydroisoquinolin-2(1H)-yl)ethyl)cyclohexyl)-1,1-dimethylurea (16).

Dimethylcarbamoyl chloride was used to afford a powder (15 mg, yield 68%). 1H NMR 

(600 MHz, CD3OD) δ 7.38–7.26 (m, 3H), 7.23 (d, J = 7.5 Hz, 1H), 4.62 (d, J = 15.3 Hz, 

1H), 4.34 (d, J = 15.3 Hz, 1H), 3.89–3.79 (m, 1H), 3.56–3.47 (m, 1H), 3.44–3.23 (m, 4H), 

3.19–3.12 (m, 1H), 2.92–2.84 (m, 6H), 1.96–1.91 (m, 2H), 1.90–1.83 (m, 2H), 1.81–1.73 

(m, 2H), 1.43–1.38 (m, 1H), 1.36–1.27 (m, 2H), 1.22–1.12 (m, 2H). MS (ESI) m/z 330.8 [M 

+ H]+.

3-(trans-4-(2-(3,4-Dihydroisoquinolin-2(1H)-yl)ethyl)cyclohexyl)-1,1-diethylurea (17).

Diethylcarbamoyl chloride was used to afford a powder (yield 54%). 1H NMR (600 MHz, 

CD3OD) δ 7.35–7.26 (m, 3H), 7.23–7.19 (m, 1H), 4.69–4.27 (m, 2H), 3.88–3.48 (m, 3H), 

3.38–3.31 (m, 8H), 1.96–1.89 (m, 2H), 1.85 (d, J = 12.5 Hz, 2H), 1.79–1.70 (m, 2H), 1.42–

1.25 (m, 3H), 1.22–1.05 (m, 8H). MS (ESI) m/z 358.4 [M + H]+.

3-(trans-4-(2-(3,4-Dihydroisoquinolin-2(1H)-yl)ethyl)cyclohexyl)-1,1-diisopropylurea (18).

Diisopropylcarbamoyl chloride was used to afford a powder (yield 60%). 1H NMR (600 

MHz, CD3OD) δ 7.34–7.25 (m, 3H), 7.21 (d, J = 7.4 Hz, 1H), 4.65–4.51 (m, 2H), 3.81–3.73 

(m, 2H), 3.57–3.42 (m, 3H), 3.41–3.26 (m, 2H), 3.24–3.10 (m, 2H), 1.93 (d, J = 12.2 Hz, 

2H), 1.88–1.81 (m, 2H), 1.80–1.68 (m, 2H), 1.43–1.34 (m, 1H), 1.34–1.06 (m, 16H). MS 

(ESI) m/z 386.8 [M + H]+.

N-(trans-4-(2-(3,4-Dihydroisoquinolin-2(1H)-yl)ethyl)cyclohexyl)pyrrolidine-1-carboxamide 
(19).

Pyrrolidine-1-carbonyl chloride was used to afford a powder (yield 39%). 1H NMR (600 

MHz, CD3OD) δ 7.38–7.24 (m, 3H), 7.24–7.19 (m, 1H), 4.70–4.27 (m, 2H), 3.90–3.49 (m, 

3H), 3.46–3.39 (m, 4H), 3.25–3.06 (m, 4H), 2.01–1.81 (m, 8H), 1.78–1.72 (m, 2H), 1.45–

1.35 (m, 1H), 1.33–1.26 (m, 2H), 1.24–1.13 (m, 2H). MS (ESI) m/z [M + H]+.

tert-Butyl (trans-4-(2-(3,4-Dihydroisoquinolin-2(1H)-yl)ethyl)cyclohexyl)carbamate (20).

Compound 20 was prepared by the same procedures as preparing compound 10. 1,2,3,4-

Tetrahydroisoquinoline (266 mg, 2 mmol), compound 4 (482 mg, 2 mmol) and sodium 

triacetoxyborohydride (848 mg, 4 mmol) were used to give the title compound as an oil (460 

mg, yield 49%). 1H NMR (600 MHz, CD3OD) δ 7.40–7.14 (m, 4H), 4.62 (d, J = 15.0 Hz, 
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1H), 4.34 (d, J = 15.1 Hz, 1H), 3.94–3.62 (m, 3H), 3.43–2.98 (m, 4H), 2.13–1.63 (m, 6H), 

1.48–1.28 (m, 10H), 1.27–1.06 (m, 4H). MS (ESI) m/z 359.9 [M + H]+.

Isopropyl (trans-4-(2-(3,4-Dihydroisoquinolin-2(1H)-yl)ethyl)cyclohexyl)carbamate (21).

Isopropyl chloroformate was used to afford a powder (yield 74%). 1H NMR (600 MHz, 

CD3OD) δ 7.34–7.24 (m, 3H), 7.21 (d, J = 7.6 Hz, 1H), 4.57–4.32 (m, 2H), 3.74–3.40 (m, 

3H), 3.37–3.28 (m, 3H), 3.23–3.12 (m, 2H), 1.94 (d, J = 12.5 Hz, 2H), 1.85 (d, J = 12.8 Hz, 

2H), 1.79–1.71 (m, 2H), 1.42–1.33 (m, 1H), 1.31–1.07 (m, 10H). MS (ESI) m/z 345.5 [M + 

H]+.

Ethyl (trans-4-(2-(3,4-Dihydroisoquinolin-2(1H)-yl)ethyl)cyclohexyl)carbamate (22).

Ethyl chloroformate was used to afford a powder (yield 41%). 1H NMR (600 MHz, CD3OD) 

δ 7.35–7.23 (m, 3H), 7.21 (d, J = 7.6 Hz, 1H), 4.67–4.24 (m, 2H), 4.10–3.98 (m, 2H), 3.93–

3.55 (m, 3H), 3.48–3.09 (m, 4H), 1.94 (d, J = 12.3 Hz, 2H), 1.87 (dd, J = 27.4, 13.1 Hz, 2H), 

1.80–1.70 (m, 2H), 1.43–1.36 (m, 2H), 1.29–1.07 (m, 6H). MS (ESI) m/z 331.7 [M + H]+.

N-(trans-4-(2-(3,4-Dihydroisoquinolin-2(1H)-yl)ethyl)cyclohexyl)benzamide (23).

Benzoyl chloride was used to afford a powder (yield 59%). 1H NMR (600 MHz, CD3OD) δ 
7.82–7.77 (m, 2H), 7.54–7.49 (m, 1H), 7.44 (dd, J = 8.4, 7.0 Hz, 2H), 7.35–7.26 (m, 3H), 

7.22 (d, J = 7.2 Hz, 1H), 4.64–4.58 (m, 1H), 4.36–4.30 (m, 1H), 3.90–3.77 (m, 1H), 3.43–

3.21 (m, 5H), 3.17 (s, 1H), 2.06–1.99 (m, 2H), 1.91 (d, J = 13.1 Hz, 2H), 1.84–1.74 (m, 2H), 

1.47–1.40 (m, 3H), 1.28–1.18 (m, 2H). MS (ESI) m/z 363.5 [M + H]+.

N-(trans-4-(2-(3,4-Dihydroisoquinolin-2(1H)-yl)ethyl)cyclohexyl)propionamide (24).

Propionyl chloride was used to afford a powder (yield 74%). 1H NMR (600 MHz, CD3OD) 

δ 7.34–7.26 (m, 3H), 7.23–7.17 (m, 1H), 4.78–4.42 (m, 2H), 3.70–3.54 (m, 3H), 3.42–3.30 

(m, 2H), 3.24–3.14 (m, 2H), 2.16 (q, J = 7.5 Hz, 2H), 1.92 (d, J = 12.2 Hz, 2H), 1.86 (d, J = 

12.6 Hz, 2H), 1.78–1.72 (m, 2H), 1.41–1.35 (m, 1H), 1.34–1.15 (m, 4H), 1.11 (t, J = 7.7 Hz, 

3H). MS (ESI) m/z 315.3 [M + H]+.

N-(trans-4-(2-(3,4-Dihydroisoquinolin-2(1H)-yl)ethyl)cyclohexyl)acetamide (25).

Acetic anhydride was used to afford a powder (yield 58%). 1H NMR (600 MHz, CD3OD) δ 
7.35–7.23 (m, 3H), 7.21 (d, J = 7.5 Hz, 1H), 4.65–4.26 (m, 2H), 3.84–3.43 (m, 3H), 3.36–

3.29 (m, 2H), 3.24–3.13 (m, 2H), 1.96–1.89 (m, 5H), 1.88–1.81 (m, 2H), 1.79–1.69 (m, 2H), 

1.43–1.33 (m, 1H), 1.28–1.12 (m, 4H). MS (ESI) m/z 301.4 [M + H]+.

3-(cis-4-(2-(3,4-Dihydroisoquinolin-2(1H)-yl)ethyl)cyclohexyl)-1,1-dimethylurea (26).

Compound 26 (21 mg, yield 64%) was prepared using the same procedures as preparing 

compound 16–19 and 21–25 from 1,2,3,4-tetrahydroisoquinoline (13.3 mg, 0.1 mmol), 

compound 4 (24.1 mg, 0.1 mmol) and sodium triacetoxyborohydride (42.4 mg, 0.2 mmol). 
1H NMR (600 MHz, CD3OD) δ 7.37–7.27 (m, 3H), 7.26–7.20 (m, 1H), 4.64 (d, J = 15.1 Hz, 

1H), 4.36 (d, J = 15.1 Hz, 1H), 3.87–3.83 (m, 1H), 3.75–3.67 (m, 1H), 3.46–3.39 (m, 1H), 

3.36–3.26 (m, 3H), 3.21–3.12 (m, 1H), 2.93 (s, 6H), 1.89 (t, J = 7.1 Hz, 2H), 1.74–1.59 (m, 

7H), 1.59–1.45 (m, 2H). MS (ESI) m/z 330.8 [M + H]+.
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tert-Butyl (trans-4-((3,4-Dihydroisoquinolin-2(1H)-yl)methyl)cyclohexyl)carbamate (27).

Compound 27 (31 mg, yield 15%) was prepared using the same procedures as preparing 

compound 14 from 1,2,3,4-tetrahydroisoquinoline (133 mg, 1 mmol) and compound 6 (100 

mg, 0.44 mmol). 1H NMR (600 MHz, CD3OD) δ 7.34–7.22 (m, 3H), 7.21 (dd, J = 7.5, 1.4 

Hz, 1H), 4.59 (d, J = 15.4 Hz, 1H), 4.32 (d, J = 15.3 Hz, 1H), 3.93–3.69 (m, 1H), 3.43–3.34 

(m, 1H), 3.30 (d, J = 1.6 Hz, 3H), 3.19–3.08 (m, 2H), 2.01–1.82 (m, 5H), 1.43 (s, 9H), 1.34–

1.25 (m, 2H), 1.24–1.12 (m, 2H). MS (ESI) m/z 345.6 [M + H]+.

3-(trans-4-((3,4-Dihydroisoquinolin-2(1H)-yl)methyl)cyclohexyl)-1,1-dimethylurea (28).

Compound 28 (15 mg, yield 68%) was prepared using the same procedures as preparing 

compound 15 from compound 27 (31 mg, 0.07 mmol). 1H NMR (600 MHz, CD3OD) δ 
7.33–7.25 (m, 3H), 7.21 (d, J = 7.5 Hz, 1H), 4.64–4.54 (m, 1H), 4.37–4.29 (m, 1H), 3.87–

3.75 (m, 1H), 3.56–3.48 (m, 1H), 3.44–3.36 (m, 1H), 3.32–3.24 (m, 2H), 3.19–3.10 (m, 2H), 

2.88 (s, 6H), 2.01–1.84 (m, 5H), 1.43–1.33 (m, 2H), 1.26–1.14 (m, 2H). MS (ESI) m/z 316.6 

[M + H]+.

3-(4-(2-(3,4-Dihydroisoquinolin-2(1H)-yl)ethyl)phenyl)-1,1-dimethylurea (30).

To a solution of compound 29 (40 mg, 0.16 mmol) and triethylamine (32 mg, 0.32 mmol) in 

dichloromethane (5 mL) was added methanesulfonyl chloride (22.8 mg, 0.2 mmol) dropwise 

at 0 °C. The solution was stirred for 2 h at rt before being quenched with saturated aqueous 

sodium bicarbonate. The mixture was diluted with water and extracted with 

dichloromethane. The organic phase was dried over anhydrous sodium sulfate and 

concentrated under reduced pressure. The resulting rESIdue was dissolved in acetonitrile (5 

mL). To the resulting solution were added potassium carbonate (69 mg, 0.5 mmol) and 

1,2,3,4-tetrahydroisoquinoline (65 mg, 0.5 mmol). The mixture was refluxed overnight 

before being diluted with water (10 mL) and extracted with ethyl acetate (3 × 10 mL). The 

organic phase was dried over anhydrous sodium sulfate and concentrated under reduce 

pressure. The resulting rESIdue was purified by silica gel column (CH3OH/DCM, 0–10%) 

to give an oil intermediate (30 mg). The intermediate was treated with trifluoroacetic acid (1 

mL) and dichloromethane (2 mL) for 3 h at rt before being condensed under reduced 

pressure. To a mixture of the resulting rESIdue and potassium carbonate (40 mg, 0.3 mmol) 

in tetrahydrofuran (2 mL) was added dimethylcarbamoyl chloride (16.1 mg, 0.2 mmol). The 

mixture was stirred for 1 h before being condensed under reduced pressure. The resulting 

rESIdue was purified by preparative HPLC (10–100% methanol/0.1% TFA in H2O) to give 

the title compound as white powder (17 mg, yield 23%). 1H NMR (600 MHz, CD3OD) δ 
7.37 (d, J = 8.2 Hz, 2H), 7.35–7.26 (m, 3H), 7.23 (dd, J = 12.3, 7.8 Hz, 3H), 4.51 (d, J = 

105.7 Hz, 2H), 3.99–3.64 (m, 1H), 3.54–3.44 (m, 3H), 3.27–3.17 (m, 2H), 3.12 (dd, J = 

10.4, 6.3 Hz, 2H), 3.01 (s, 6H). MS (ESI) m/z 324.3 [M + H]+.

3-(5-(3,4-Dihydroisoquinolin-2(1H)-yl)pentyl)-1,1-dimethylurea (32).

Compound 32 (40 mg, yield 10%) was prepared using the same procedures as preparing 

compound 15 from 1,2,3,4-tetrahydroisoquinoline (133 mg, 1 mmol). 1H NMR (600 MHz, 

CD3OD) δ 7.34–7.24 (m, 3H), 7.21 (d, J = 7.5 Hz, 1H), 4.44 (s, 2H), 3.61–3.55 (m, 2H), 
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3.28–3.24 (m, 2H), 3.23–3.17 (m, 4H), 2.87 (s, 6H), 1.89–1.83 (m, 2H), 1.63–1.55 (m, 2H), 

1.47–1.42 (m, 2H). MS (ESI) m/z 290.3 [M + H]+.

3-(trans-4-(2-(5,6-Dichloro-3,4-dihydroisoquinolin-2(1H)-yl)ethyl)cyclohexyl)-1,1-
dimethylurea (33).

Compound 33 (27 mg, 53%) was prepared using the same procedures as preparing 

compound 12 from 5,6-dichloro-1,2,3,4-tetrahydroisoquinoline (20.2 mg, 0.1 mmol) and 

compound 4 (24.1 mg, 0.1 mmol). 1H NMR (600 MHz, CD3OD) δ 7.51 (d, J = 8.3 Hz, 1H), 

7.21 (d, J = 8.4 Hz, 1H), 4.64–4.30 (m, 2H), 3.83–3.45 (m, 3H), 3.37–3.32 (m, 2H), 3.26–

3.17 (m, 2H), 2.87 (s, 6H), 1.92 (dd, J = 13.4, 3.7 Hz, 2H), 1.85 (d, J = 12.5 Hz, 2H), 1.78–

1.71 (m, 2H), 1.42–1.35 (m, 1H), 1.34–1.29 (m, 2H), 1.19–1.12 (m, 2H). MS (ESI) m/z 
398.1 [M + H]+.

3-(trans-4-(2-(7,8-Dihydro-[1,3]dioxolo[4,5-g]isoquinolin-6(5H)-yl)ethyl)cyclohexyl)-1,1-
dimethylurea (34).

Compound 34 (24 mg, 49%) was prepared using the same procedures as preparing 

compound 12 from 5,6,7,8-tetrahydro-[1,3]dioxolo[4,5-g]isoquinoline (17.7 mg, 0.1 mmol) 

and compound 4 (24.1 mg, 0.1 mmol). 1H NMR (600 MHz, CD3OD) δ 6.72 (s, 1H), 6.67 (s, 

1H), 5.95 (s, 2H), 4.52–4.39 (m, 1H), 4.25–4.12 (m, 1H), 3.82–3.67 (m, 1H), 3.51–3.45 (m, 

1H), 3.35–3.26 (m, 3H), 3.17–2.98 (m, 2H), 2.87 (s, 6H), 1.92 (dd, J = 13.5, 3.8 Hz, 2H), 

1.87–1.81 (m, 2H), 1.76–1.71 (m, 2H), 1.39–1.33 (m, 1H), 1.34–1.26 (m, 2H), 1.18–1.09 

(m, 2H). MS (ESI) m/z 374.2 [M + H]+.

3-(trans-4-(2-(5-Chloro-3,4-dihydroisoquinolin-2(1H)-yl)ethyl)cyclohexyl)-1,1-dimethylurea 
(35).

Compound 35 (23 mg, 48%) was prepared using the same procedures as preparing 

compound 12 from 5-chloro-1,2,3,4-tetrahydroisoquinoline (13.3 mg, 0.1 mmol) and 

compound 4 (24.1 mg, 0.1 mmol). 1H NMR (600 MHz, CD3OD) δ 7.43 (d, J = 7.9 Hz, 1H), 

7.34–7.29 (m, 1H), 7.20 (d, J = 7.7 Hz, 1H), 4.64–4.28 (m, 2H), 3.87–3.45 (m, 3H), 3.35–

3.29 (m, 2H), 3.20–3.13 (m, 2H), 2.87 (s, 6H), 1.94–1.89 (m, 2H), 1.85 (d, J = 13.1 Hz, 2H), 

1.78–1.72 (m, 2H), 1.43–1.35 (m, 1H), 1.33–1.27 (m, 2H), 1.19–1.12 (m, 2H). MS (ESI) 

m/z 364.2 [M + H]+.

3-(trans-4-(2-(6-Chloro-3,4-dihydroisoquinolin-2(1H)-yl)ethyl)cyclohexyl)-1,1-dimethylurea 
(36).

Compound 36 (19 mg, 40%) was prepared using the same procedures as preparing 

compound 12 from 6-chloro-1,2,3,4-tetrahydroisoquinoline (13.3 mg, 0.1 mmol) and 

compound 4 (24.1 mg, 0.1 mmol). 1H NMR (600 MHz, CD3OD) δ 7.32 (dd, J = 8.3, 2.2 Hz, 

1H), 7.29–7.25 (m, 2H), 4.71–4.13 (m, 2H), 3.92–3.41 (m, 3H), 3.34–3.30 (m, 2H), 3.24–

3.10 (m, 2H), 2.87 (s, 6H), 1.94–1.89 (m, 2H), 1.85 (d, J = 12.5 Hz, 2H), 1.77–1.72 (m, 2H), 

1.42–1.35 (m, 1H), 1.34–1.26 (m, 2H), 1.17–1.12 (m, 2H). MS (ESI) m/z 364.2 [M + H]+.
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3-(trans-4-(2-(7-Chloro-3,4-dihydroisoquinolin-2(1H)-yl)ethyl)cyclohexyl)-1,1-dimethylurea 
(37).

Compound 37 (19 mg, 42%) was prepared using the same procedures as preparing 

compound 12 from 7-chloro-1,2,3,4-tetrahydroisoquinoline (13.3 mg, 0.1 mmol) and 

compound 4 (24.1 mg, 0.1 mmol). 1H NMR (600 MHz, CD3OD) δ 7.35–7.29 (m, 2H), 7.21 

(dd, J = 8.4, 1.8 Hz, 1H), 4.56–4.31 (m, 2H), 3.79–3.44 (m, 3H), 3.34–3.27 (m, 2H), 3.23–

3.11 (m, 2H), 2.87 (s, 6H), 1.92–1.93 (m, 2H), 1.85 (d, J = 13.1 Hz, 2H), 1.77–1.69 (m, 2H), 

1.42–1.35 (m, 1H), 1.34–1.25 (m, 2H), 1.18–1.12 (m, 2H). MS (ESI) m/z 364.1 [M + H]+.

3-(trans-4-(2-(8-Chloro-3,4-dihydroisoquinolin-2(1H)-yl)ethyl)cyclohexyl)-1,1-dimethylurea 
(38).

Compound 38 (25 mg, 52%) was prepared using the same procedures as preparing 

compound 12 from 8-chloro-1,2,3,4-tetrahydroisoquinoline (13.3 mg, 0.1 mmol) and 

compound 4 (24.1 mg, 0.1 mmol). A portion of compound 38 was converted to free base 

form with aqueous sodium bicarbonate for 1H NMR and 13C NMR. 1H NMR (800 MHz, 

CD3OD) δ 7.22 (d, J = 7.9 Hz, 1H), 7.19–7.15 (m, 1H), 7.10 (d, J = 7.6 Hz, 1H), 3.66 (s, 

2H), 3.56–3.49 (m, 1H), 2.95 (t, J = 6.1 Hz, 2H), 2.89 (s, 6H), 2.76 (t, J = 6.0 Hz, 2H), 2.66–

2.61 (m, 2H), 1.93 (dd, J = 13.1, 4.0 Hz, 2H), 1.89–1.84 (m, 2H), 1.59–1.53 (m, 2H), 1.36–

1.29 (m, 3H), 1.12 (dd, J = 12.3, 3.3 Hz, 2H). 13C NMR (201 MHz, CD3OD) δ 159.1, 136.7, 

131.9, 131.8, 127.1, 127.1, 126.2, 56.0, 53.6, 50.0, 49.7, 35.4, 35.1, 33.4, 33.0, 32.1, 28.5. 

MS (ESI) m/z 364.2 [M + H]+. HRMS m/z [M + H]+ calcd for C20H31ClN3O+ 364.2150, 

found 364.2165.

1,1-Dimethyl-3-(trans-4-(2-(8-methyl-3,4-dihydroisoquinolin-2(1H)-yl)ethyl)cyclohexyl)urea 
(39).

Compound 39 (19 mg, 42%) was prepared using the same procedures as preparing 

compound 12 from 8-methyl-1,2,3,4-tetrahydroisoquinoline (14.7 mg, 0.1 mmol) and 

compound 8 (24.1 mg, 0.1 mmol). 1H NMR (600 MHz, CD3OD) δ 7.22–7.16 (m, 1H), 7.10 

(dd, J = 17.3, 7.5 Hz, 2H), 4.55 (d, J = 15.5 Hz, 1H), 4.20 (d, J = 15.5 Hz, 1H), 3.80 (d, J = 

11.1 Hz, 1H), 3.54–3.46 (m, 1H), 3.44–3.20 (m, 4H), 3.10 (d, J = 16.5 Hz, 1H), 2.87 (s, 6H), 

2.27 (s, 3H), 1.98–1.89 (m, 2H), 1.86 (d, J = 13.1 Hz, 2H), 1.81–1.75 (m, 2H), 1.43–1.35 

(m, 1H), 1.34–1.26 (m, 2H), 1.21–1.09 (m, 2H). MS (ESI) m/z 344.2 [M + H]+.

3-(trans-4-(2-(8-Bromo-3,4-dihydroisoquinolin-2(1H)-yl)ethyl)cyclohexyl)-1,1-dimethylurea 
(40).

Compound 40 (24 mg, 46%) was prepared using the same procedures as preparing 

compound 12 from 8-bromo-1,2,3,4-tetrahydroisoquinoline (21.2 mg, 0.1 mmol) and 

compound 4 (24.1 mg, 0.1 mmol). 1H NMR (600 MHz, CD3OD) δ 7.56 (d, J = 7.8 Hz, 1H), 

7.30 (d, J = 7.7 Hz, 1H), 7.25 (t, J = 7.8 Hz, 1H), 4.64–4.18 (m, 2H), 3.85–3.44 (m, 3H), 

3.42–3.37 (m, 2H), 3.26–3.20 (m, 2H), 2.87 (s, 6H), 1.92 (dd, J = 13.4, 3.7 Hz, 2H), 1.86 (d, 

J = 12.3 Hz, 2H), 1.77 (q, J = 7.4 Hz, 2H), 1.43–1.36 (m, 1H), 1.35–1.28 (m, 2H), 1.19–1.13 

(m, 2H). MS (ESI) m/z 408.2 [M + H]+.
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3-(trans-4-(2-(8-Fluoro-3,4-dihydroisoquinolin-2(1H)-yl)ethyl)cyclohexyl)-1,1-dimethylurea 
(41).

Compound 41 (20 mg, 43%) was prepared using the same procedures as preparing 

compound 12 from 8-fluoro-1,2,3,4-tetrahydroisoquinoline (15.1 mg, 0.1 mmol) and 

compound 4 (24.1 mg, 0.1 mmol). 1H NMR (600 MHz, CD3OD) δ 7.39–7.34 (m, 1H), 7.11 

(d, J = 7.8 Hz, 1H), 7.06 (dd, J = 9.9, 8.3 Hz, 1H), 4.33 (s, 2H), 3.85–3.44 (m, 3H), 3.40–

3.35 (m, 2H), 3.27–3.19 (m, 2H), 2.87 (s, 6H), 1.93–1.89 (m, 2H), 1.88–1.82 (m, 2H), 1.80–

1.73 (m, 2H), 1.43–1.35 (m, 1H), 1.34–1.26 (m, 2H), 1.19–1.12 (m, 2H). MS (ESI) m/z 
348.2 [M +H]+.

1,1-Dimethyl-3-(trans-4-(2-(8-(trifluoromethyl)-3,4-dihydroisoquinolin-2(1H)-
yl)ethyl)cyclohexyl)urea (42).

Compound 42 (15 mg, 29%) was prepared using the same procedures as preparing 

compound 12 from 8-(trifluoromethyl)-1,2,3,4-tetrahydroisoquinoline (15.1 mg, 0.1 mmol) 

and compound 4 (24.1 mg, 0.1 mmol). 1H NMR (600 MHz, CD3OD) δ 7.68 (d, J = 7.6 Hz, 

1H), 7.57 (d, J = 7.7 Hz, 1H), 7.54–7.49 (m, 1H), 4.78–4.42 (m, 2H), 4.03–3.69 (m, 1H), 

3.53–3.46 (m, 1H), 3.45–3.28 (m, 5H), 2.87 (s, 6H), 1.95–1.89 (m, 2H), 1.88–1.83 (m, 2H), 

1.81–1.69 (m, 2H), 1.44–1.35 (m, 1H), 1.34–1.24 (m, 2H), 1.19–1.10 (m, 2H). MS (ESI) 

m/z 398.2 [M + H]+.

3-(trans-4-(2-(8-Methoxy-3,4-dihydroisoquinolin-2(1H)-yl)ethyl)cyclohexyl)-1,1-dimethylurea 
(43).

Compound 43 (19 mg, 40%) was prepared using the same procedures as preparing 

compound 12 from 8-methoxy-1,2,3,4-tetrahydroisoquinoline (16.3 mg, 0.1 mmol) and 

compound 4 (24.1 mg, 0.1 mmol). 12H NMR (600 MHz, CD3OD) δ 7.12 (d, J = 8.5 Hz, 

1H), 6.88–6.82 (m, 1H), 6.81 (d, J = 2.6 Hz, 1H), 4.59–4.17 (m, 2H), 3.78 (s, 3H), 3.53–3.34 

(m, 1H), 3.33–3.24 (m, 4H), 3.23–3.11 (m, 2H), 2.87 (d, J = 1.3 Hz, 6h), 1.92 (dd, J = 12.9, 

3.7 Hz, 2H), 1.87–1.82 (m, 2H), 1.76–1.70 (m, 2H), 1.42–1.34 (m, 1H), 1.34–1.23 (m, 2H), 

1.19–1.06 (m, 2H). MS (ESI) m/z 360.4 [M + H]+.

Experimental Procedures for in Vitro Biochemical Assays.

D2R Gi/O-Mediated cAMP Inhibition Assay.—D2R or D3R Gi/o-mediated cAMP 

inhibition assays were performed in parallel with D2R or D3R β-Arrestin recruitment Tango 

assays. Human D2R or D3R transfected HEK293T cells co-expressing the cAMP biosensor 

GloSensor-22F (Promega) were seeded (15 000 cells/40 μL/well) into white 384 clear-

bottom, tissue culture plates in Dulbecco’s modified Eagle’s medium (DMEM) containing 

1% dialyzed fetal bovine serum (FBS). Next day, drug dilutions were made in drug buffer 

(Hank’s balanced salt solution (HBSS), 20 mM N-(2-hydroxyethyl)piperazine-N'-

ethanesulfonic acid (HEPES), 0.1% bovine serum albumin (BSA), 0.01% ascorbic acid, pH 

7.4), and the same drug dilutions used for the Gi/o-mediated cAMP inhibition assays were 

also used for β-arrestin recruitment Tango assay. Media were removed and 20 μL of drug 

buffer was added per well and allowed to equilibrate for at least 15 min room temperature. 

To start the assay, cells were treated with 5 μL/well of 5× drug using a FLIPR (Molecular 

Devices). After 15 min, cAMP accumulation was initiated by the addition of 5 μL/well of 
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either 0.3 μM isoproterenol (final concentration) for D2R or 1 μM of Forskolin for D3R 

diluted in GloSensor reagent. Luminescence per well per second was read on a MicroBeta 

plate counter (PerkinElmer). Data were normalized to maximum cAMP inhibition by 

quinpirole (100%) and basal cAMP accumulation by isoproterenol (0%). Data were 

analyzed using the sigmoidal dose–response function built into GraphPad Prism 5.0. 

Notably, HEK293T cells expressing the GloSensor-22F alone (no hD2R) were assayed in 

parallel and displayed no inhibition of isoproterenol-stimulated cAMP, either by quinpirole 

or by the test compounds, suggesting that the effect observed in hD2L-expressing cells was 

due to compound acting via the recombinant receptor.

D2R β-Arrestin Recruitment Tango Assay.—Recruitment of β-arrestin to agonist-

stimulated D2L or D3 receptors was performed using Tango.41,56 Briefly, HTLA cells stably 

expressing β-arrestin-TEV protease and a tetracycline transactivator-driven luciferase were 

plated in 15 cm dishes in DMEM containing 10% FBS and transfected (via calcium 

phosphate) with 10 μg of a D2V2-TCS-tTA or D3V2-TCS-tTA construct. The next day, cells 

were plated in white, clear-bottom, 384-well plates (Greiner; 15 000 cells/well, 40 μL/well) 

in DMEM containing 1% dialyzed FBS. The following day, media were decanted and 

exchanged for fresh DMEM media containing 1% dialyzed FBS. Importantly, the same drug 

dilutions used for the Gi/o-mediated cAMP inhibition assay were used for the Tango assay to 

prevent compound solubility variability between assays. Cells were treated with 10 μL/well 

of drug using a FLIPR and for D2R antagonist assays, antagonists were diluted in 10 nM 

dopamine. After at least 20–22 h, the medium were removed and replaced with 1:20 diluted 

BrightGlo reagent (Promega), and luminescence per well was read using a MicroBeta plate 

counter (PerkinElmer). Data were normalized to vehicle (0%) and quinpirole or dopamine-

stimulated controls (100%) and analyzed using the sigmoidal dose–response function built 

into GraphPad Prism 5.0.

D2R β-Arrestin Recruitment BRET Assay.—To measure D2R-mediated β-arrestin 

recruitment, HEK293T cells were co-transfected in a 1:1:15 ratio with human D2long 

containing a C-terminal renilla luciferase (RLuc8), GRK2, and Venus-tagged N-terminal β-

arrestin2. Next day, transfected cells were plated in polylysine coated 96-well white clear-

bottom cell culture plates in plating media (DMEM +1% dialyzed FBS) at a density of 30 

000–40 000 cells in 200 μL/well and incubated overnight. Next day, media was decanted and 

cells were washed twice with 60 μL of drug buffer (1× HBSS, 20 mM HEPES, 0.1% BSA, 

0.01% ascorbic acid, pH 7.4). Then 60 μL of drug buffer was added per well and drug 

stimulation was initiated with addition of 30 μL of drug (3×) per well. Then 10 μL/well of 

RLuc substrate, coelenterazine h (Promega, 5 μM final concentration) was added and read 

15 min post drug addition, which is the same time point for D2R Gαi1-γ2 dissociation 

BRET assay. Plates were read for both luminescence at 485 nm and fluorescent eYFP 

emission at 530 nm for 1 s/well using a Mithras LB940. The ratio of eYFP/RLuc was 

calculated per well and the net BRET ratio was calculated by subtracting the eYFP/RLuc per 

well from the eYFP/RLuc ratio in wells without Venus-β-arrestin2 present. The net BRET 

ratio was plotted as a function of drug concentration using GraphPad Prism 5 (GraphPad 

Software Inc., San Diego, CA). Data were normalized to % quinpirole or dopamine 

stimulation and analyzed using nonlinear regression log(agonist) versus response.
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D2R Gαi1-γ2 Dissociation BRET Assay.—To measure D2R-mediated Gαi1-γ2 

dissociation, HEK293T cells were co-transfected in a 1:1:1:1 ratio of Gαi1-RLuc, Gβ1, 

GFP2-Gγ2, and human D2long, respectively. Gαi1-RLuc, Gβ1, and Gγ2-GFP2 constructs 

were generously provided by Dr. Michel Bouvier. Cells were plated and assays were 

performed exactly similar to the BRET arrestin assay, except the substrate used was 

Coelenterazine 400a (NanoLight, 5 μM final concentration). Plates were read after 15 min 

drug incubation, which is the same time point for D2R β-arrestin recruitment BRET assay, 

measuring luminescence at 400 nm and fluorescent GFP2 emission at 515 nm for 1 s/well 

using a Mithras LB940. The ratio of GFP2/RLuc was calculated per well and plotted as a 

function of drug concentration using GraphPad Prism 5 (GraphPad Software Inc., San 

Diego, CA). Data were normalized to % quinpirole stimulation and analyzed using nonlinear 

regression log(agonist) versus response.

Bias Calculation.—Transduction coefficients (log(τ/KA)) were calculated using the Black 

and Leff operational model in GraphPad Prism 5.0, where τ is agonist efficacy and KA is the 

equilibrium dissociation constant and were calculated with respect to quinpirole, the D2 full 

agonist reference. Transduction coefficients were calculated for both pathways and averaged 

across experiments. Calculation of bias factors utilized the method by Kenakin et al.,57 

where the Δlog/τKA) was calculated relative to the reference and the ΔΔlog(τ/KA.) was 

calculated by subtracting the β-arrestin2 from the Gi/o transduction coefficient to yield the 

antilog transformed bias factors with respect to Gi/o activity.

Molecular Docking of Compounds 1, 16, and 38.—The crystal structure of the 

dopamine D2 receptor (D2R) in complex with risperidone was retrieved from the Protein 

Data Bank (www.rcsb.org) by its identifying code (PDB: 6CM4). The structure was then 

manually edited to remove the T4 lysozyme, oleic acid, and the di(hydroxyethyl)ether. The 

structure also contained three thermo-stabilizing mutations: I1223.40A, L3756.37A, and 

L3796.41A, which were retained, as these rESIdue positions are not near the ligand binding 

site and were not predicted to impact binding pose. Risperidone was retained for purposes of 

maintaining an orthosteric site that was conducive to ligand binding during the modeling 

process. Because antagonists, such as risperidone, are known to stabilize different receptor 

conformations compared to agonists, we sought to compare this structure to that of a 

previous D2R model that was successfully implemented to model functionally selective D2 

agonists.41 The two structures were aligned and superimposed in PyMol 2.2.0. The allatom 

binding site root-mean-square deviation (RMSD) was computed in PyMol after overlaying 

the two D2R structures and selecting the atoms in the transmembrane helices and 

extracellular domains that border the orthosteric binding pocket of the receptor. The RMSD 

was calculated to ensure sufficient similarity between the atom positions of the rESIdues 

important for binding. The all-atom binding site RMSD between our model and this 

previous D2R model was 0.74 Å,41 which indicates a high degree of similarity between the 

arrangements of the atoms lining the binding pockets of both structures (Figure 3A). 

Compounds 1, 16, and 38 were docked to the orthosteric binding site of our D2R model 

using DOCK3.7.2.58 As previously described,59 the Dock 3.7.2 program superimposes 

atoms of each molecule onto matching spheres to dock flexible ligands into a binding site. 

Matching spheres represent favorable positions for individual ligand atoms, and in this study, 
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45 was used, based on the atom positions of the original risperidone complex. For docking, 

the receptor structure was prepared, and AMBER united-atom charges were assigned. 

Reduce60 was utilized to protonate receptor structures, whereas partial charges from the 

united-atom AMBER61 force field were used for all receptor atoms. Energy grids were used 

to assess the various energy terms of the DOCK scoring function including AMBER van der 

Waals potential, Poisson–Boltzmann electrostatic potentials using QNIFFT, and ligand 

desolvation from the occluded volume of the target for different ligand orientations. Prior to 

docking, ligand conformations and protonation states were calculated, and ligands were 

prepared in an energy-minimized state. Marvin (version 18.12, ChemAxon, 2018; https://

www.chemaxon.com) was used to protonate each ligand at pH 7.4. Corina62 (Molecular 

Networks GmbH) was then used to create a three-dimensional rendering of each protomer 

before conformational sampling via Omega (OpenEye Scientific Software).63 Finally, 

AMSOL64 was used to compute the charges and initial solvation energies of the ligands. 

Following docking to the matching spheres, the lowest energy poses for each ligand were 

visualized and compared with existing crystal structures of ligands bound to aminergic 

GPCRs.38,65,66

Experimental Procedures for in Vivo Studies in Mice.

Receptor Occupancy Assay.—In vivo receptor occupancy was assessed in male c57 

mice. All procedures performed on animals were in accordance with regulations and 

established guidelines and were reviewed and approved by an Institutional Animal Care and 

Use Committee.

Mice were dosed with vehicle (5% DMSO: 5% Cremophor: 90% saline plus 1 mequiv of 

HCl) or 38 (0.32, 1, 3.2, 10, or 32 mg/kg) subcutaneously at a dose volume of 10 mL/kg. 

After 20 min of the subcutaneous dose, the mice were dosed retro-orbitally with 100 μci 

[3H]raclopride at a dose volume of 5 mL/kg. After a 30 min drug pretreatment period, the 

animals were euthanized by live decapitation. Trunk blood was collected and centrifuged at 

7500 rpm for 10 min, and the plasma was collected and stored at −80 °C until exposure level 

analysis. The striatum and the cerebellum (used to define nonspecific binding) were 

immediately dissected and homogenized in 20 mg/mL of assay buffer (20 mM HEPES, 4.16 

mM NaHCO3, 0.44 mM KH2PO4, 0.63 mM NaH2PO4 127 mM NaCl, 5.36 mM KCl, 1.26 

mM CaCl2, 0.98 mM MgCl2) with a polytron for 10 s. The rest of the brain was immediately 

frozen on dry ice and stored at −80 °C until exposure level analysis. Striatum or cerebellum 

(400 μL) was filtered through presoaked Whatman GF/B filter circles followed by 2 × 5 mL 

of assay buffer. Filters were transferred to scintillation vials containing Ultima Gold MV 

scintillation cocktail. Radioactivity was measured using the PerkinElmer TriCarb liquid 

scintillation counter.

Locomotor Activity Assay.—Adult male and female C57BL/6 mice were housed 3–5/

cage on a 14:10 h light/dark cycle (lights on 0700 h) in a humidity- and temperature-

controlled room with food and water provided ad libitum. All experiments were conducted 

with an approved protocol from the Duke University Institutional Animal Care and Use 

Committee. Motor activity was assessed in a 21 × 21 × 30 cm3 open field (Omnitech Inc., 

Columbus, OH) under 340 lx illumination. C57BL/6 mice were housed in the test room 24 h 
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prior to testing. Animals were injected (i.p.) with vehicle or different doses of 38 and 

immediately placed into the open field. After 30 min, mice were removed from the test arena 

and given (i.p.) the vehicle or 6 mg/kg PCP (Sigma-Aldrich, St. Louis, MO) and returned 

immediately to the open field for an additional 90 min. Horizontal distance traveled (cm) 

was quantitated with Fusion software (Omnitech) and scored in 5 min bins across testing. 

The behavioral data are presented as means and standard errors of the mean and analyzed by 

repeated measures ANOVA followed by Bonferroni-corrected pair-wise comparisons where 

a p < 0.05 was considered significant.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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ABBREVIATIONS

GPCR G protein-coupled receptor

SFSR structure—functional selectivity relationships

D2R dopamine D2 receptor

cAMP cyclic adenosine monophosphate

LHS left-hand side

RHS right-hand side

BRET bioluminescence resonance energy transfer

GRK2 G protein-coupled receptor kinase 2

D1R dopamine D1 receptor

D3R dopamine D3 receptor

D4R dopamine D4 receptor

D4R dopamine D5 receptor

TFA trifluoroacetic acid

DCM dichloromethane
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Figure 1. 
Further confirmation that compound 38 is a G protein-biased D2R partial agonist. (A) D2R-

mediated BRET β-arrestin recruitment activity of compounds 38 and quinpirole (EC50 = 115 

nM). (B) D2R-mediated Gi1 BRET activity of compounds 38 (EC50 = 0.37 nM, Emax = 

47%) and quinpirole (EC50 = 2.4 nM). Data are the average of at least three independent 

experiments performed in duplicate.
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Figure 2. 
(A) Antagonist activity of compound 38 (IC50 = 71 nM) on dopamine (DA)-stimulated D2R 

β-arrestin recruitment is similar to clozapine (IC50 = 140 nM) as measured by Tango. Lack 

of D3R agonist activity of compound 38 compared to positive control quinpirole in the Gi/o-

mediated cAMP inhibition GloSensor assay (B) and β-arrestin recruitment Tango assay (C). 

Data are the average of three independent experiments performed in triplicate.
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Figure 3. 
In silico structure-based SFSR studies of D2R agonists. (A) When the D2R crystal structure 

utilized for this study (gold) is overlayed with a D2R homology model from a previous study 

that examined the structural determinants of D2R agonist functional selectivity (blue), a high 

degree of similarity was noted between the two structures (all-atom binding site RMSD = 

0.74 Å).41 (B) The docked pose of cariprazine suggests that together with I184EL2, F1895.38 

may function as a “lid” over the binding pocket leading to increase ligand rESIdence times 

and β-arrestin recruitment. (C) Compound 16 engages D2R from deeper within the 

orthosteric site, and the steric constraints it imposes on TM5 may partially underlie its Gi/o 

bias. (D) Compound 38’s chloro substituent forms a hydrogen bond with conserved TM5 

serines and angles with the rest of the scaffold away from extracellular loop 2 (EL2), which 

would be predicted to enhance its Gi bias compared to 16.
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Figure 4. 
Compound 38 exhibits dose dependence to binding to D2 receptor in male c57 mice. 

[3H]Raclopride in vivo binding assay was used.
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Figure 5. 
Compound 38 displays a potent antipsychotic-like activity in a hyperlocomotion study. 

C57Bl/6 mice were given the vehicle (Veh), 1, or 3.5 mg/kg 38 (intraperitoneally (i.p.)), 

followed 30 min later with the Veh or 6 mg/kg phencyclidine (PCP, i.p.). (A) Locomotor 

activities are shown as 5 min binned intervals. The repeated measures analysis of variance 

(RMANOVA) are provided for baseline [time: F(5, 145) = 12.731, p < 0.001; treatment: F(3, 

29) = 2.722, p = 0.063; time by treatment: F(15, 145) = 1.878, p = 0.099] and for PCP-

stimulated activity [time: F(17, 493) = 22.056, P < 0.001; treatment: F(3, 29) = 16.992, p < 

0.001; time by treatment: F(51, 493) = 6.159, p = < 0.001]. (B) Locomotor activities 

presented as cumulative activity (0–30 min) and PCP-stimulated activity (31–90 min). A 

RMANOVA found the following: [pre–post: F(1, 29) = 55.625, p < 0.001; treatment: F(3, 

29) = 20.004, p < 0.001; pre–post by treatment: F(3, 29) = 17.651, p < 0.001]. N = 8–9 mice/

group; Bonferroni-corrected pair-wise comparisons—*p < 0.05, vs baseline within 

treatment; +p < 0.05, vs the Veh-PCP group within the post-stimulation interval; #p < 0.05, 1 

mg/kg compound vs 3.5 mg/kg compound 38 within the post-stimulation interval.
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Scheme 1. Synthesis of Cariprazine Analoguesa
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Scheme 2. Synthesis of Compound 6 and Its Analogues 16–25a
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Scheme 3. Synthesis of Compounds for Exploring the Middle Linkera
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Scheme 4. Synthesis of Compounds with Various Substituents on the LHS Phenyl Ringa
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