5 research outputs found

    Biologically-inspired data decorrelation for hyperspectral imaging

    Get PDF
    Hyper-spectral data allows the construction of more robust statistical models to sample the material properties than the standard tri-chromatic color representation. However, because of the large dimensionality and complexity of the hyper-spectral data, the extraction of robust features (image descriptors) is not a trivial issue. Thus, to facilitate efficient feature extraction, decorrelation techniques are commonly applied to reduce the dimensionality of the hyper-spectral data with the aim of generating compact and highly discriminative image descriptors. Current methodologies for data decorrelation such as principal component analysis (PCA), linear discriminant analysis (LDA), wavelet decomposition (WD), or band selection methods require complex and subjective training procedures and in addition the compressed spectral information is not directly related to the physical (spectral) characteristics associated with the analyzed materials. The major objective of this article is to introduce and evaluate a new data decorrelation methodology using an approach that closely emulates the human vision. The proposed data decorrelation scheme has been employed to optimally minimize the amount of redundant information contained in the highly correlated hyper-spectral bands and has been comprehensively evaluated in the context of non-ferrous material classificatio

    Automatic plant disease diagnosis using mobile capture devices, applied on a wheat use case

    Get PDF
    Disease diagnosis based on the detection of early symptoms is a usual threshold taken into account for integrated pest management strategies. Early phytosanitary treatment minimizes yield losses and increases the efficacy and efficiency of the treatments. However, the appearance of new diseases associated to new resistant crop variants complicates their early identification delaying the application of the appropriate corrective actions. The use of image based automated identification systems can leverage early detection of diseases among farmers and technicians but they perform poorly under real field conditions using mobile devices. A novel image processing algorithm based on candidate hot-spot detection in combination with statistical inference methods is proposed to tackle disease identification in wild conditions. This work analyses the performance of early identification of three European endemic wheat diseases – septoria, rust and tan spot. The analysis was done using 7 mobile devices and more than 3500 images captured in two pilot sites in Spain and Germany during 2014, 2015 and 2016. Obtained results reveal AuC (Area under the Receiver Operating Characteristic –ROC– Curve) metrics higher than 0.80 for all the analyzed diseases on the pilot tests under real conditions

    What Can Pictures Tell Us About Web Pages? Improving Document Search Using Images

    No full text

    Biologically-inspired data decorrelation for hyper-spectral imaging

    No full text
    <p>Abstract</p> <p>Hyper-spectral data allows the construction of more robust statistical models to sample the material properties than the standard tri-chromatic color representation. However, because of the large dimensionality and complexity of the hyper-spectral data, the extraction of robust features (image descriptors) is not a trivial issue. Thus, to facilitate efficient feature extraction, decorrelation techniques are commonly applied to reduce the dimensionality of the hyper-spectral data with the aim of generating compact and highly discriminative image descriptors. Current methodologies for data decorrelation such as principal component analysis (PCA), linear discriminant analysis (LDA), wavelet decomposition (WD), or band selection methods require complex and subjective training procedures and in addition the compressed spectral information is not directly related to the physical (spectral) characteristics associated with the analyzed materials. The major objective of this article is to introduce and evaluate a new data decorrelation methodology using an approach that closely emulates the human vision. The proposed data decorrelation scheme has been employed to optimally minimize the amount of redundant information contained in the highly correlated hyper-spectral bands and has been comprehensively evaluated in the context of non-ferrous material classification</p

    Ladle furnace slag characterization through hyperspectral reflectance regression model for secondary metallurgy process optimization

    No full text
    In steelmaking process, close control of slag evolution is as important as control of steel composition. However, there are no industrially consolidated techniques that allow in-situ analysis of the slag chemical composition, as in the case of steel with OES-spectrometers. In this work, a method to analyze spectral reflectance of ladle furnace slag samples to estimate their composition is proposed. This method does not require sample preprocessing and is based on a regression algorithm that mathematically maps the spectral reflectance of the slag with its actual composition with errors lower than 10%. Specifically designed normalization and calibration steps have been proposed to allow a global model training with data from different locations. This allows real-time monitoring of the thermodynamical state of the steel process by feeding a thermodynamic equilibrium optimization model. The system has been validated on several ArcelorMittal locations achieving process savings of 0.71 Euro per liquid steel tons.Partial financial support of this work by the Basque Government (Etorgai NUPROSS ER-2010/00001 and DAVOS ER-2014/0004 Projects) is gratefully acknowledged
    corecore