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Abstract 

Disease diagnosis based on the detection of early symptoms is a usual threshold taken into account for 

integrated pest management strategies. Early phytosanitary treatment minimizes yield losses and 

increases the efficacy and efficiency of the treatments. However, the appearance of new diseases 

associated to new resistant crop variants complicates their early identification delaying the application 

of the appropriate corrective actions. The use of image based automated identification systems can 

leverage early detection of diseases among farmers and technicians but they perform poorly under real 

field conditions using mobile devices. A novel image processing algorithm based on candidate hot-spot 

detection in combination with statistical inference methods is proposed to tackle disease identification 

in wild conditions. This work analyses the performance of early identification of three European 

endemic wheat diseases – septoria, rust and tan spot. The analysis was done using 7 mobile devices and 

more than 3500 images captured in two pilot sites in Spain and Germany during 2014, 2015 and 2016. 

Obtained results reveal AuC (Area under the Receiver Operating Characteristic –ROC– Curve) metrics 

higher than 0.80 for all the analyzed diseases on the pilot tests under real conditions. 

1. Introduction 

The identification of early symptoms for diseases is one of the major milestones for the crop protection 

industry but also for two social and environmental challenges: increasing the yield or minimizing yield 

losses to ensure food security for 9 billion people in 2050 and increasing the efficacy of the 
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phytosanitary treatments to reduce their use. 

George Agrios1 divides the measurement of plant diseases into three parts: Measuring of the incidence, 

severity and yield loss. Incidence is described as the proportion of the plant which is diseased. The 

severity is specified as proportion of area which is infected. And the yield loss is the share of the harvest 

which is destroyed or which has an effect to the quality of the produce. Even though severity and yield 

loss are of a much bigger importance for the grower, the incidence of a disease is much more difficult 

to measure and in some cases not possible until it is too late due to incipient incidence that is not 

detected by the farmers. It is necessary to take into account that the detection of early symptoms is a 

usual threshold considered for integrated pest management strategies of diseases in cereals. 

Consequently, research needs to focus on activities that can identify diseases in an early stage, so that 

targeted activities can be triggered, symptoms can be treated and even epidemics can be prevented. If 

solutions can be advanced to achieve this, the corresponding yield losses could be minimized. The 

annual yield loss of 20 – 40% of agricultural productivity is therefore due to impacts of pathogens, 

animal and plant weeds2. Studies have shown that yield losses per year accumulate up to $ 5 billion in 

the US
3
. Another example for leaf rust epidemics and their respective impact on losses during 2001 – 

2003 in Mexico equated $ 32 million in durum wheat4. Therefore, the use of resistant varieties or crop 

protection applications can minimize the loss risk significantly as it is shown by a survey of Chai et al.5.  

where a decrease of yield losses could be verified between 1985 and 1999 due to the usage of resistant 

varieties and fungicides. Nevertheless, an increase on the yield loss can be observed since 2000 due to 

new rust races. In Europe new multi-virulent rust strains appeared in 2011. Several wheat varieties 

                                                
1
 Agrios G. N., (2006, 5

th
 Ed.). Plant Pathology, p. 952. Academic Press. ISBN: 9780120445653 

2
 Oerke, E. C. (2006). Crop losses to pests. Journal of Agricultural Science 144: 31-43 

3 Savary S., A. Ficke, J.N. Aubertot and C. Hollier (2012). Crop losses due to diseases and their 

implications for global food production losses and food security. Food security, DOI 10.1007/s12571-

012-0200-5. 
4 Herrera-Foessel S. A., R.P. Singh, J. Huerta-Espino, J. Crossa, J. Yuen and A. Djurle (2006). Effect of Leaf 

Rust on Grain Yield and Yield Traits of Durum Wheats with Race-Specific and Slow-Rusting Resistance to 

Leaf Rust.  Plant Disease 90 (8): 1065-1072. 
5
 Chai Y., P. Pardey, J. Beddow, T. Hurley, D. Kriticos and H. Joachim-Braun (2015). The Global 

Occurrence and Economic Consequences of Stripe Rust in Wheat. In Advancing Pest and Disease 

Modeling Workshop, University of Minnesota, CSIRO, and CIMMYT 

http://www.globalrust.org/sites/default/files/2014%20BGRI%20Pardey.pdf (accessed 14th October 

2016) 
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became affected and the new strains seems to be very aggressive based on field observations. These 

recently appeared races named as Warrior and Warrior (-) (data from Global Rust Reference Center, 

2017) have changed European situation and urged research to elaborate on tools to help farmers 

detect the early presence of rust in the field avoiding to increase losses. Unexpected annual weather 

variation and the effects of climate change for diseases management tend to add uncertainty to 

decision making and inducing high incidence and severe outbreaks of endemic diseases unknown 

before6,7. 

As new pathotypes are emerging, it is essential to detect upcoming diseases in an early stage to prevent 

or minimize yield losses. Especially an early detection is almost impossible and requires very specific 

knowledge, as symptoms are not yet well developed. There is a need to provide image processing 

based plant disease identification, to diagnose diseases in their early development stages to be able to 

react in time with crop protection applications. At the same time, it is necessary to increase the 

reliability of disease identification and validate it on real environment. Other sensor devices for direct 

or indirect color variation detection could provide useful information as severity and spreading in the 

plant or crop but they do not produce enough information to diagnose a specific damage in the plant, 

including biotic (disease, pest and weeds) and abiotic hazards. 

This paper gives an insight into a trainable system to identify plant diseases which has been validated in 

three European endemic wheat diseases by image processing based techniques in combination with 

statistical inference methods to solve the above mentioned technical problem. Plant disease 

identification as used herein includes the determination of a probability that a particular disease is 

present. Typically, plant diseases cause characteristic damage on the surface of plant elements (e.g. 

leaf, root, blossom, fruit, flower, stem, etc.). Therefore, characteristic symptoms become visible on 

some elements of an infected plant. 

                                                
6
 Coakley S.M., Scherm H. and Chakraborti S. (1999). Climate Change and plant disease management. 

Annual. Review of Phytopathology 37: 399-426 
7
 Garrett K.A., Dendy S.P., Frank E.E., Rouse M.N. and Travers S.E. (2007). Climate Change effects on 

plant disease: genomes to ecosystems. Annual Review of Phytopathology 44: 489-509 
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2. Related Work 

Different research has addressed automated plant disease identification by computerized visual 

diagnostic methods. Satellite or Airborne remote sensing have been proposed for disease identification. 

Huang et al
8
 performed a comparative study of in-situ and airborne hyperspectral images in order to 

evaluate tailored spectral indexes to detect yellow rust in wheat.  Mahlein et al9 developed spectral 

disease indexes to detect the presence of sugar beet diseases by selecting the two most discriminant 

wavelengths per disease whereas Moshou et al10 extracted suitable spectral indices by an unsupervised 

approach.  Although these methods are appropriate to evaluate and identify the extension of a disease 

over a region, they fail on the detection of early symptoms as they require the presence of the disease on 

its later stage to be easily recognizable by airborne imagery. Other authors 
11

 make an exhaustive review 

on advanced techniques for plant disease diagnosis analyzing the volatiles produced by a diseased plant in 

order to develop specific electronic sensors. 

In order to identify the diseases based on early symptoms, automatic picture analysis has been proposed 

by different authors. Arun Kumar et al.12 introduced an approach to automatically grade diseases on 

plant leaves. The proposed system uses image processing techniques to analyze color specific 

information in an image of the infected plant. A k-means clustering method is performed for every 

pixel in the image to extract clusters with infected spots. The segmented image is saved and the total 

leaf area is calculated. Finally, the disease spreading on plant leaves is graded by employing Fuzzy 

Logic to determine a particular disease. A high computational effort is required for such an image 

                                                
8 Huang W., Lamb D.W., Niu Z., Zhang Y., Liu L., Wang J. (2007). Identification of yellow rust in wheat 

using in situ spectral reflectance measurements and airborne hyperspectral imaging. Precision 

Agriculture 8(4-5):187-97. 
9 Mahlein A.K., Rumpf T., Welke P., Dehne H.W., Plümer L., Steiner U. and Oerke E.C. (2013). 

Development of spectral indices for detecting and identifying plant diseases. Remote Sensing of 

Environment 128:21-30.  
10

 Moshou D., Bravo C., Oberti R., West J., Bodria L., McCartney A., and Ramón H. (2005). Plant disease 

detection based on data fusion of hyper-spectral and multi-spectral fluorescence imaging using 

Kohonen maps. Real Time Imaging 11(2):75–83. 
11

 Sankaran S., Mishra A., Ehsani R. and Davis C. (2010). A review of advanced techniques for detecting 

plant diseases. Computers and Electronics in Agriculture 72(1):1–13. 
12

Sanjeev S Sannakki, Vijay S Rajpurohit, V B Nargund, Arun Kumar R, Prema S Yallur Leaf Disease 

Grading by Machine Vision and Fuzzy Logic, International Journal of Computer Technology and 

Applications 2 (5): 1709-1716 
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processing based method although some initiatives have reduced the computational cost
13

. Other 

authors 14 satisfactorily used an approach combining texture, color and shape features to detect the 

presence of a disease. However, they focus on leafs containing one disease at the same time and not 

focusing on early symptoms. 

Other initiatives such as PlantVillage15 have released more than 50,000 expertly curated images of 

healthy and infected leaves of different 14 different crops (apple, blueberry, corn, grape…) 12 of them 

having also healthy leaves and a total number of 26 different diseases. The use of deep convolutional 

neural networks have been already proposed
16,17

, obtaining accuracies greater than 99% when the 

testing images belong to the same dataset. However, when the model is tested against images 

collected from online trusted sources
16

, the accuracy is degraded down to 31.4%. The fact that the 

database is taken under controlled conditions and the presence of only late stage diseases on the 

database precludes its use as a real digital farming application. Besides this, the existing databases15 

does not consider the case where more than one disease are present in the same plant; therefore, 

models trained and tested on it will only be able to detect the most visible disease, which is not 

necessarily the one of most importance for the crop.  

3. Materials & Methods 

In order to develop an algorithm capable of distinguishing diseases at early stages, an extensive image 

database has been created for wheat crop. Although wheat crop is used for validation purposes, the 

algorithm has been designed to be used on different crops and diseases and can be applied to other 

crops such as barley or corn.  An acquisition campaign took place during the years 2014, 2015 and 

                                                
13

 Xie X., Zhang X., He B., Liang D., Zhang D. and Huang L. (2016). A system for diagnosis of wheat leaf 
diseases based on Android smartphone. Optical Measurement Technology and Instrumentation 
doi:10.1117/12.2246919  
14

 Siricharoen P., Scotney B., Morrow P., Parr G. (2016). A Lightweight Mobile System for Crop Disease 
Diagnosis. In: Campilho A., Karray F. (eds) Image Analysis and Recognition. ICIAR 2016. Lecture Notes 
in Computer Science, vol 9730. Springer, Cham 
15 Hughes D.P. and Salathé M. (2015). An open access repository of images on plant health to enable 

the development of mobile disease diagnostics. Computers and Society. In Computer Science, 

arXiv:1511.08060v2 [cs.CY]. Cornell University Library. 
16 Mohanty, S. P., Hughes, D. P., & Salathé, M. (2016). Using Deep Learning for Image-Based Plant 

Disease Detection. Frontiers in Plant Science, 7. 
17

 Sladojevic S., Arsenovic M., Anderla A., Culibrk D. and Stefanovic D. (2016). Deep Neural Networks 
Based Recognition of Plant Diseases by Leaf Image Classification. Computational Intelligence and 
Neuroscience, doi:10.1155/2016/328980 
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2016 in Germany and Spain coincident with the crop season. Images were acquired at field conditions 

on the field with seven different devices: iPad, iPhone4, Dell-tablet, Samsung Galaxy Note, Windows 

Phone, Samsung S3, iPhone5. The acquisition campaign was designed to last the whole crop season, 

so that pictures of the disease at different phenological growth stages could be acquired. In order to 

assure variability, the pictures were taken in at least 36 different wheat varieties searching for the 

symptoms in the most common or recently commercialized ones with different resistance disease 

level and different life cycle. Examples of pictures acquired during these campaigns can be seen in the 

Figure 1. 

 

Figure 1: Examples of pictures of infected images in the dataset 

The three diseases considered in this work were septoria, rust and tan spot
18

 . Besides them pictures 

containing other diseases such as powdery mildew or abiotic damages were included to assure the 

algorithm is able to generalize the absence of disease appropriately. 

The early symptoms of septoria are characterized by water-soaked (chlorotic or yellowed) patches 

which quickly turn to ashen grey-brown oval lesions surrounded by a chlorotic halo, randomly 

distributed on leaves. Later in the season, the disease severity increased, these lesions frequently 

coalesce to produce large areas of brown-dry tissue and can appear in the whole plant, from the 

lower to upper leaves. Depending on the climate and the fungus implied, the patches contain the 

visible black pycnidia (small black points) which are the most characteristic sign of septoria in mature 

lesions. 

Symptoms of brown-red and yellow rust at early stages seen as individual pustules yellow to orange-

                                                
18

 Clark B, Bryson R, Tonguc L, Kelly C, Jellis G. (2010). The encyclopaedia of cereal diseases, Ed. 
HGCA and BASF plc, Crop Protection 



  

Page 7  

brown in color and about 0,5-1,0 mm. A Chlorotic halo surrounded the pustules is quite common 

which appear even before de pustule formation but not always appears.  Later in the season, the 

brown pustules (brown-red rust) tend to be scattered at random compared with the more striped 

symptoms of yellow rust. 

The first foliar symptoms caused by tan spot appear as small (1 to 2 mm), light brown blotches that 

develop into oval-shaped, light brown, necrotic lesions, sometimes bordered with a thin yellow halo. 

Later in the season, these lesions coalesce to produce large areas of brown tissue, similar to septoria 

symptoms in late stages.  

A total number of 3637 images of wheat diseases have been taken under natural conditions during 

2014 and 2015 on both pilot sites and they have been used as a training and development database. 

The details of these dataset are summarized in Table 1: 

Database name  

(acquisition time) 

Rust Septoria Tan spot 

Wheat 2014 (W-2014) 471 700 183 

Wheat 2015 (W-2015) 516 1805 457 

Table 1: Generated database for training purposes 

Taking into account the symptoms and signals for the above mentioned diseases, the pictures were 

taken from an expanded leaf, form the upper leaf surface, avoiding pictures of symptoms or signals 

located in the margins or in the tip of the leaves. The image for these databases should be 

representative of the disease symptoms which appear in a cluster of plants or in a field. The picture 

showed damaged and not damaged tissue and were performed avoiding direct light. 

In order to design and validate an algorithm capable of identify crop diseases at their early stages, all 

dataset images were accurately segmented by expert technicians. All the spots presenting each 

disease as well as the image region comprising the leaf were segmented. A specific segmentation was 

done for each disease (see Figure 2). 
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Figure 2: Manual segmentation process left) original image, center) leaf region, right) segmented rust hot-spots 

To validate the classification results under real conditions, a group of 20 farmers and technicians 

belonging to Neiker-Tecnalia performed a pilot validation test with wheat crop in Germany and Spain. 

A smartphone application was given to them and they acquired images containing healthy leaves, 

rust, septoria, tan spot, other common diseases as Powdery mildew (Blumeria graminis f. sp. tritici) 

and abiotic diseases on the field under natural conditions. A gray cardboard was given to the farmers 

in order to optionally help them taking the picture under windy conditions. However, no information 

from the cardboard was used by the developed algorithm.  The taken images were diagnosed online 

by the application and the results were stored to calculate performance of the system at real 

conditions. These images were validated by a technician at Neiker and this groundtruth was checked 

against previous algorithm results already stored on the database. 

   

Figure 3: Validation dataset images left) image taken in a green-house, center) image taken in the field using the accessory 

gray-board, right) image taken in the field 

During the validation of the system, a total of 179 images were taken (examples of these images can be 

seen in the Figure 3). From those images, 96 presented at least rust, 88 septoria and 18 contained tan 

spot (Table 2). 

Database name  

(acquisition time) 

Rust Septoria Tan spot Healthy or other 

diseases 

Total images 
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Pilot database (P-2016) 96 88 18 27 179 

Table 2: Distribution of diseases for the pilot validation database 

A screenshot of the application is shown at Figure 4.  

                       

Figure 4: Left image, the leaf photo taken by the farmer is shown; Right image, the output result from the algorithms is 

visualized 

4. Disease identification algorithm 

Although several algorithms have been proposed on the literature for disease identification, they have 

not demonstrated their capabilities under natural conditions as a step decrease on their accuracy was 

seen when the images are taken in real field conditions. To overcome this inconvenience, an 

algorithm pipeline that is able to work under image acquisition variable conditions is proposed. These 

variabilities can be caused, among others, by differences on the acquisition sensor, image scale, 

illumination, background and picture orientation. We propose a generic algorithm being able to be 

trained for different crops and diseases. To validate this versatility, the algorithm has been tested with 

three wheat diseases that present different visual characteristics. The proposed algorithm minimizes 

the accuracy loss under these variability conditions while coping with both early and late stage 

diseases.    

In order to achieve this, a hierarchical approach based on the following stages is proposed: 

a) Image preprocessing: The acquired image is processed by means of color constancy 

algorithms to minimize the natural illumination variability effects. After that, leaf is 

segmented and isolated from the rest of the image. Different approaches have been taken 

depending on the nature of the image (natural image, existing draft mask from the user 

input…). 



  

 

b) Disease identification algorithm that comprises the following steps:

a. Extraction of disease candidate regions: The segmented leaf 

corrected to achieve color 

susceptible of containing

b. Each extracted Hot-Spot

and categorize each region in terms of its visual characteristics. 

checked against different disease 

c. All this information is gathered and processed by a high

classifier, that is able to extract the complementarities of the different inherent 

features that are embedded within an image.

This global layout of the algorithm is described in the 

Each stage is detailed in the following 

a. Image preprocessing module.

This module performs color constancy normalization on the 

natural image variability. After that, 

isolated to obtain a color normalized leaf image.

are involved (Figure 6) and described in the following paragraphs.

Figure 6: Diagram 
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isease identification algorithm that comprises the following steps:  

Extraction of disease candidate regions: The segmented leaf isolated image

corrected to achieve color constancy, normalized and candidate sub

containing diseases, called Hot-Spots, are extracted.  

Spot region is analyzed in detail by local descriptors that extract 

and categorize each region in terms of its visual characteristics. Next, each 

different disease detection inference models. 

All this information is gathered and processed by a high-level classifier

that is able to extract the complementarities of the different inherent 

features that are embedded within an image. 

is described in the Figure 5: 

Figure 5: Global algorithm layout 

Each stage is detailed in the following sub-sections: 

Image preprocessing module. 

This module performs color constancy normalization on the acquired images to reduce 

natural image variability. After that, the portion of the image that contains the leaf is segmented and 

a color normalized leaf image. In order to achieve this normalization several steps 

) and described in the following paragraphs. 

: Diagram for color constancy and image leaf segmentation 

isolated image is 

normalized and candidate sub-regions 

analyzed in detail by local descriptors that extract 

Next, each Hot-Spot is 

level classifier, called meta-

that is able to extract the complementarities of the different inherent 

 

 the effects for 

is segmented and 

In order to achieve this normalization several steps 
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i. Global Color Constancy  

The differences in color appearance of the images in the database are due to various factors, such as 

changes in the physical lighting conditions (caused by weather, location, date and time of capture, 

orientation, etc.), differences in terms of color response and reproducible gamut among the diverse 

capture device models and individual units, or variability in the in-device image preprocessing and 

compression pipeline on a per-device and per-image basis. Such lack of control in the image 

acquisition workflow implies that a full color normalization process is not feasible, unless a relatively 

large set of color patches (printed under a color-managed workflow and measured with a colorimeter) 

are included with each and every capture and used to compute and apply a per-image color 

normalizing transformation19. The cost and non-convenience of deploying such a solution at scale 

makes this approach inadvisable. 

However, a color constancy transformation that aims at reducing the variance of the images in terms 

of white balance (while leaving out the color-gamut diversity) can be computed and applied per image 

in a feasible manner. Therefore, as a first preprocessing step, a global color constancy method is 

proposed in order to try to make the system more robust to changing illumination conditions during 

the recording of the images, and thus reach better classification results. The proposed method uses 

image statistics information to model the lighting conditions that were present while the image was 

captured, estimates such illuminant’s color, and applies an inverse transform that maps the recorded 

colors to a common white point, yielding a white-balanced image. Shades of gray20, Gray world21, Gray 

edge
22

 and Max-RGB
23

 color constancy algorithms have been proposed and evaluated to this respect.  

ii. Leaf segmentation 

Leaf segmentation is a module to extract one or more portions from the prior color-constant image. 

                                                
19 Finlayson G.D., Mackiewicz M., and Hurlbert A. (2015) Color Correction Using Root-Polynomial 

Regression. IEEE Transactions on Image Processing 24 (5): 1460–1470. 
20 Finlayson G. D. and Trezzi E. (2004). Shades of Gray and Colour Constancy. Color and Imaging 

Conference Jan 2004 (1): 37-41). 
21 Buchsbaum G. (1980). A spatial processor model for object colour perception. Journal of the Franklin 

institute 310 (1): 1-2. 
22 van de Weijer J., Gevers T., and Gijsenij A. (2007). Edge-Based Color Constancy. IEEE Transactions on 

Image Processing 16 (9): 2207-2214 
23 Land E. H. and McCann J. J. (1977). Lightness and retinex theory. JOSA 61 (1): 1-11. 
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Plant element extraction is set up in such a way that the portions extracted from the color-normalized 

image correspond to a leaf. Therefore, the extractor performs image processing operations which 

segment the portions of the image associated with plant elements from other portions in the image 

which do not provide any information on the disease (e.g. image background).  

Two different alternatives for leaf extraction were considered:  

i. Automated natural image leaf segmentation 

The automated natural image leaf segmentation algorithm computes a binary leaf mask without any 

user intervention. The segmentation pipeline in this step relies on the Simple Linear Iterative 

Clustering (SLIC)24 superpixel extraction algorithm, although other approaches such as Quickshift25 or 

Felsenszwalb’s efficient graph-based image segmentation26 could be also used. SLIC adapts a k-means 

clustering-based approach in the CIELAB color space while keeping a configurable spatial coherence 

as to enforce compactness. Next is the analysis of each of the generated superpixels (segments) to 

distinguish between leaf and non-leaf segments, by means of the extraction of different visual 

features. Each of such features maps a value to each superpixel, representing a weighting factor. The 

used features are the following: 1) mean, maximum or variance of a Gaussian weighting function, 2) 

mean, maximum or variance of the magnitude of the Local Binary Patterns (LBP)
27

 flatness of the 

superpixel 3) maximum of the average of the b color channel and average of the inverted a color 

channel or 4) intra-superpixel perceptual color variance. 

In a third step, all the probabilities available for each superpixel are combined either by means of the 

product or the sum of the individual probabilities. This yields a unique real value in the range [0, 1] 

for each superpixel, representing its probability of being part of the leaf. In the last step, a threshold 

value is selected and the image is binarized so that all the pixels pertaining to a superpixel with 

                                                
24 Achanta R., Shaji A., Smith K., Lucchi A., Fua P., and Süsstrunk S. (2012). SLIC Superpixels Compared to 

State-of-the-Art Superpixel Methods. IEEE Transactions on Pattern Analysis and Machine Intelligence 34 

(11): 2274-2282. 
25 Vedaldi, A. and Soatto, S. (2008). Quick shift and kernel methods for mode seeking. European 

Conference on Computer Vision, Marseille, France 
26 Felzenszwalb, P.F. and Huttenlocher, D.P. (2004). Efficient graph-based image segmentation, 

International Journal of Computer Vision 59: 167. doi:10.1023/B:VISI.0000022288.19776.77 
27

 Ojala T., Pietikainen M. and Maenpaa T.(2002). Multiresolution gray-scale and rotation invariant 

texture classification with local binary patterns. IEEE Transactions on pattern analysis and machine 

intelligence 24(7):971-987. 



  

 

combined probability greater or equal such threshold are considered as being part of the leaf

result can be seen in Figure 7.  

 

Figure 

ii. User input mask refinement method

Under real use cases it can happen that the taken image can be quite blurred or with strong artifacts 

or that the user wants to check a specific region of th

can be used to delimitate the region of interest

generated by the user is not systematically generated and it is just a rough estimation of the region 

where the identification algorithm should focus

refinement is required. 

Figure 8: Leaf mask refinement algorithm left

app right) in blue, the refined mask (blue) with the detected diseases (other colors)

In order to perform the leaf mask refinement, an 

as the user’s given input mask. After that, Chan

image channel is performed. The use of active contours without edges allows us to divide the image 

on two differentiated regions that minimize their internal variability. In practical 

                                                
28 Chan T.F., Vese L.A. (2001). Active Contours Without Edges

(2): 266-277 
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combined probability greater or equal such threshold are considered as being part of the leaf

Figure 7: Natural image segmentation algorithm 

User input mask refinement method 

cases it can happen that the taken image can be quite blurred or with strong artifacts 

or that the user wants to check a specific region of the leaf. In this case, a manually generated mask 

can be used to delimitate the region of interest (Figure 8 – center image). However, this input mask 

generated by the user is not systematically generated and it is just a rough estimation of the region 

where the identification algorithm should focus. Because of this, an additional step of user input

       

left) original image, center) input mask given by a user through the 

the refined mask (blue) with the detected diseases (other colors) 

In order to perform the leaf mask refinement, an initial segmentation is defined with its starting point 

. After that, Chan-Vese28 segmentation algorithm over the saturation(s) 

image channel is performed. The use of active contours without edges allows us to divide the image 

on two differentiated regions that minimize their internal variability. In practical 

Active Contours Without Edges. IEEE Transactions on Image Processing

combined probability greater or equal such threshold are considered as being part of the leaf. The 

 

cases it can happen that the taken image can be quite blurred or with strong artifacts 

e leaf. In this case, a manually generated mask 

. However, this input mask 

generated by the user is not systematically generated and it is just a rough estimation of the region 

Because of this, an additional step of user input mask 

) input mask given by a user through the smartphone 

 

is defined with its starting point 

he saturation(s) 

image channel is performed. The use of active contours without edges allows us to divide the image 

on two differentiated regions that minimize their internal variability. In practical terms, each 

Transactions on Image Processing 10 



  

 

interaction of the active contour minimizat

mask estimation.   

 

b. Disease identification classifier

The disease identification classifier 

previously segmented leaf (Figure 9

select any suspicious sub-region on the leaf as a disease candidate

candidate is then analyzed by the extraction of specific visual features of the candidate 

use of a specific statistical inference model for the specific disease. It is noteworthy to indicate that 

this sub-segmenting approach smartly increases the accuracy of 

diseases. The hypothesis is that this training mechanism helps 

classifiers are trained to distinguish among the candidate detected hot

candidate regions are trained for disease/not disease characterization

the discriminative features. Once each 

weights all individual decision to make a globa

Figure 9: Diagram of the 

a. Primary segmentation module

The developed primary segmentation algorithm consists of a 

models the color features that are always present on a

performed over selected color channels including Lab

segmented into different feature clusters

                                                
29

 Lewis, D. D. (1998, April). Naive (Bayes) at forty: The independence assumption in information 
retrieval. In European conference on machine learning (pp. 4
30

 “Computer Vision - A Modern Approach”, by Forsyth, Ponce, Pearson Education ISBN 0
pages 301 to 307 
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interaction of the active contour minimization flows into a more homogeneous and accurate leaf 

Disease identification classifier 

 performs the identification of one or several diseases over the 

9). First, a primary segmentation is done in order to detect and 

region on the leaf as a disease candidate (Hot-Spots). 

candidate is then analyzed by the extraction of specific visual features of the candidate region 

of a specific statistical inference model for the specific disease. It is noteworthy to indicate that 

smartly increases the accuracy of the system when working with early 

that this training mechanism helps to deal with early stage diseases, 

classifiers are trained to distinguish among the candidate detected hot-spots the 

candidate regions are trained for disease/not disease characterization, allowing a better training of 

the discriminative features. Once each Hot-Spot is properly identified, a meta-classifier module 

weights all individual decision to make a global assessment. 

: Diagram of the disease identification classifier  

Primary segmentation module 

The developed primary segmentation algorithm consists of a Naïve Bayes classifier
29

 

that are always present on an infected image. This initial segmentation 

performed over selected color channels including Lab and HSL. Based on these features, the image is 

segmented into different feature clusters30 where a cluster represents a group of pixels having similar 

Lewis, D. D. (1998, April). Naive (Bayes) at forty: The independence assumption in information 
retrieval. In European conference on machine learning (pp. 4-15). Springer Berlin Heidelberg.

A Modern Approach”, by Forsyth, Ponce, Pearson Education ISBN 0

ion flows into a more homogeneous and accurate leaf 

the identification of one or several diseases over the 

). First, a primary segmentation is done in order to detect and 

 Each disease 

region and the 

of a specific statistical inference model for the specific disease. It is noteworthy to indicate that 

the system when working with early 

deal with early stage diseases, as the 

spots the segmented 

allowing a better training of 

classifier module 

 

  that robustly 

segmentation is 

Based on these features, the image is 

pixels having similar 

Lewis, D. D. (1998, April). Naive (Bayes) at forty: The independence assumption in information 
15). Springer Berlin Heidelberg. 

A Modern Approach”, by Forsyth, Ponce, Pearson Education ISBN 0-13-085198-1, 



  

 

visual feature values (e.g., color values or textural values).

segmentation model. The Bayesian model acceptance threshold is selected to assure 

in the image feasible for presenting the desired disease

In view of the full image content the identified candidate regions typically cover only a relatively small 

number of pixels when compared to the number of pixels of the entire image. 

amount of data that is used as the basis for the next stages of image processing is significantly 

reduced by the Naïve-Bayes filter mechanism

reduced. The visual feature statistics of each identified

Bayes classification model. Each identified image cluster is analyzed and its disease likelihood 

probability is calculated and is segmented by using the Bayes segmentation model

biased according to the predefined threshold to ensure a low percentage (e.g. 1% 

positives while maintaining a low rate of false positives. That is, after the application of the Bayesian 

filter to the clusters only such clusters 

for further analysis. In other words, the predefined threshold ensures that every candidate region in 

the image will be segmented for further analysis. Those candidate regions can then again be 

processed in the cluster function to receive more precise results as the infected area can be further 

isolated. Detected candidate hot-spot regions are depicted in 

Figure 10: Primary segmentation based on Lab clustering and Bayes classifier

One of the biggest advantages of this approach is that it makes a first segmentation that eliminates 

the regions in the images that have useless visual information. 

b. Hot-Spot identification module

Each obtained Hot-Spot region is described by means of 

designed to sample the color of the disease 

deviation of the Lab channels over each segmented 

Page 15 

visual feature values (e.g., color values or textural values). Each image blob   feeds a Naïve 

Bayesian model acceptance threshold is selected to assure that

presenting the desired disease is classified as a candidate.  

In view of the full image content the identified candidate regions typically cover only a relatively small 

number of pixels when compared to the number of pixels of the entire image. Consequentl

is used as the basis for the next stages of image processing is significantly 

Bayes filter mechanism and thus, the computational cost of the algorithm 

The visual feature statistics of each identified cluster is then confronted with this 

model. Each identified image cluster is analyzed and its disease likelihood 

probability is calculated and is segmented by using the Bayes segmentation model. This model is

the predefined threshold to ensure a low percentage (e.g. 1% - 5%) of discarded 

positives while maintaining a low rate of false positives. That is, after the application of the Bayesian 

filter to the clusters only such clusters above the predefined threshold are kept as candidate region 

for further analysis. In other words, the predefined threshold ensures that every candidate region in 

the image will be segmented for further analysis. Those candidate regions can then again be 

tion to receive more precise results as the infected area can be further 

spot regions are depicted in Figure 10. 

: Primary segmentation based on Lab clustering and Bayes classifier showing the detected candidate hotspots

One of the biggest advantages of this approach is that it makes a first segmentation that eliminates 

in the images that have useless visual information.  

Spot identification module 

region is described by means of two visual descriptors. A first descriptor 

designed to sample the color of the disease contains information about the mean and standard 

deviation of the Lab channels over each segmented Hot-Spot blob. In order to also capture the color of 

Naïve Bayesian 

that every blob 

In view of the full image content the identified candidate regions typically cover only a relatively small 

Consequently, the 

is used as the basis for the next stages of image processing is significantly 

and thus, the computational cost of the algorithm 

cluster is then confronted with this Naïve-

model. Each identified image cluster is analyzed and its disease likelihood 

. This model is 

5%) of discarded 

positives while maintaining a low rate of false positives. That is, after the application of the Bayesian 

old are kept as candidate region 

for further analysis. In other words, the predefined threshold ensures that every candidate region in 

the image will be segmented for further analysis. Those candidate regions can then again be 

tion to receive more precise results as the infected area can be further 

 

showing the detected candidate hotspots 

One of the biggest advantages of this approach is that it makes a first segmentation that eliminates 

two visual descriptors. A first descriptor 

mean and standard 

blob. In order to also capture the color of 



  

 

the healthy plant as reference, the descriptor concatenates the mean and variance of the Lab channels 

on the pixels from the Hot-Spot blob bounding 

second descriptor, designed to map the 

Uniform LBP descriptor over the RGB channels is used in order to describe blob texture

rotation invariance.  

For each disease and descriptor, a Random

descriptors that allow tagging each 

meta-classifier is used, to compute a confidence score for the particular disease by evaluating all 

determined probabilities of the candidate regions. A classification decision for one or more diseases is 

processed based on the entire picture. Information considered within the met

example, the probability given by the different

regions, weighting of each classifier 

account. 

Figure 11: Left) RGB image after local color constancy; 

by the primary segmentation; Right) green:

This process can be seen in Figure 

depicts an attempt of the algorithm of detecting one specific disease. 

algorithm performs a first attempt to detect candidate spots

are found for septoria and rust and none for 

candidate spots for septoria and rust were further analyzed and only rust spots were detected as real 

spots (depicted in green on the right column) whereas the candidate hot
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the healthy plant as reference, the descriptor concatenates the mean and variance of the Lab channels 

blob bounding boxes that do not belong to the Hot

second descriptor, designed to map the Hot-Spot texture is also calculated for each blob. Concretely, a 

Uniform LBP descriptor over the RGB channels is used in order to describe blob texture

each disease and descriptor, a Random-Forest based classifier is trained with the extracted 

each Hot-Spot blob with a disease feasibility value. In a

to compute a confidence score for the particular disease by evaluating all 

determined probabilities of the candidate regions. A classification decision for one or more diseases is 

processed based on the entire picture. Information considered within the meta-classifier are for 

example, the probability given by the different descriptors, location, size or shape of the candidate

 and the confidence necessary for an assessment to be taken into

RGB image after local color constancy; Center) Located rust Hot-Spots candidates for each disease extracted 

green: HotSpots identified as the disease, red: candidate hot-spots 

hotspot identification module. 

Figure 11 that shows a leaf that presents only rust disease. 

mpt of the algorithm of detecting one specific disease. The primary segmentation 

algorithm performs a first attempt to detect candidate spots. In the case of this leaf, candidate spots 

ust and none for tan spot as it is depicted on the central column. The 

ust were further analyzed and only rust spots were detected as real 

spots (depicted in green on the right column) whereas the candidate hot-spots for 

the healthy plant as reference, the descriptor concatenates the mean and variance of the Lab channels 

Hot-Spot region. A 

texture is also calculated for each blob. Concretely, a 

Uniform LBP descriptor over the RGB channels is used in order to describe blob texture assuring 

Forest based classifier is trained with the extracted 

a second step a 

to compute a confidence score for the particular disease by evaluating all 

determined probabilities of the candidate regions. A classification decision for one or more diseases is 

classifier are for 

descriptors, location, size or shape of the candidate 

he confidence necessary for an assessment to be taken into 

 

Spots candidates for each disease extracted 

spots refused by the 

that shows a leaf that presents only rust disease. Each row 

The primary segmentation 

In the case of this leaf, candidate spots 

on the central column. The 

ust were further analyzed and only rust spots were detected as real 

spots for septoria were 
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detected as not real septoria and depicted in red. This is caused by the ability of the hot-spot classifier 

to combine the textural information from the LBP descriptor that is able to distinguish between the 

high frequency textures of rust and the lower level frequencies of septoria. 

 

5. Results 

The presented algorithm was developed on Python programming language and deployed as a service 

on a Linux based processing server. The deployed service was connected to a middleware server that 

managed the connections from Android and Windows-phone applications. Average processing time 

of the algorithm was 5.2 seconds with a standard deviation of 2.6 seconds depending on the number 

suspicious hot-spots found. 

In order to validate the results of the proposed method, a database was created using the images 

acquired in 2014 and 2015 (named W-2014 and W-2015) with 987 images containing rust, 2505 

containing septoria and 657 containing tan spot on a total of 3637 images. 

This training database was divided into training and validation sets. In order to avoid over-fitting and 

biasing, the dataset was divided into ten folds where the picture acquisition date was used as set 

divider. This means that, at each fold, the pictures belonging to the acquisition dates selected for 

training will be selected for the training set whereas the rest were selected for validation. At each 

fold, 90% of the acquisition dates were set as train and the remaining 10% were set as validation. 

The Area under the Receiver Operating Characteristic (ROC) Curve (AuC31,32) was selected as the most 

suitable algorithm performance metric, in order to account for the class imbalance present in the 

dataset (in such cases, the use of accuracy is discouraged). The AuC for a binary classification problem 

is constructed by first sorting all the samples by the disease presence probability predicted by the 

model for each of them. The classification threshold value is then moved all the way from 0 to 1, and 

the result at each threshold value is mapped into the plot representing False Positive (x-axis) vs. True 

Positive rates (y-axis), and measuring the resulting area (in the �0, 1� range, higher is better) under 

                                                
31 Bradley A. P. (1997). The use of the area under the ROC curve in the evaluation of machine learning 

algorithms. Pattern Recognition 30 (7): 1145-1159. 
 
32

 Fawcett T. (2006). An introduction to ROC analysis. Pattern Recognition Letters 27 (8):861-874. 
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Detailed metrics for each disease are depicted in Table 4: 

Disease AuC Accuracy Sensitivity Specificity 

Rust 0.85 0.82 0.7 0.95 

Septoria 0.90 0.85 0.91 0.79 

Tan spot 0.89 0.73 0.69 0.78 

Table 4: Identification results on the K-fold validation dataset 

In order to validate the results under real conditions, a pilot study was set in Germany and Spain in 

2016. The pilot users employed a specific developed identification smartphone application as 

described in section 3. The results of the pilot validation can be seen in the Table 5. Captures leaves 

were divided into early stage diseased plants and medium-late stage diseased plants to validate early 

disease detection. Figure 12 shows an example of early diseases leaves included on the early set 

database. 

 

such  curve.  AuC  values  over  0.85  were  obtained  for  all  diseases  on  the  k-fold  validation  sets.  It  is

important  to  remark  that  even  diseases  at  very  early  stages  were  identified.  An  additional  test  was

performed  in  order  to  quantify  the  effects  of  color  constancy  normalization  on  the  identification

metrics.  It  can  be  seen  in  Table  3,  the  use  of  color  constancy  normalization  increases  the  overall

accuracy from 0.75 up to 0.81.

Preprocessing color algorithm                              Rust                       Septoria                             Tan spot

Gray world
21

0.83 0.87 0.82

Max-RGB
 23

0.81 0.85 0.83

Shades of gray
32

0.85 0.90 0.89

Gray edge
34

0.83 0.81 0.75

Without color constancy algorithm 0.77 0.73 0.72

Table 3: classification AuC metrics for color normalized images and images without normalization
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Figure 12: Example of images with early diseases from the validation set 

Disease AuC Accuracy Sensitivity Specificity 

Rust (Early) 0,81 0,78 0,80 0,76 

Septoria (Early) 0,81 0,76 0,75 0,77 

Tan spot (Early) 0,83 0,73 0,76 0,70 

Rust (medium-late) 0,83 0,81 0,80 0,82 

Septoria (medium-late) 0,82 0,79 0,80 0,78 

Tan spot (medium-late) 0,81 0,82 0,96 0,69 

Table 5: Identification results on the May-2016 pilot 

We observed a small decrease on the AuC from an average 0.88 to 0.81 when moving into real field 

conditions. Compared with other results that fail when moving into real conditions16, the developed 

algorithm can cope better with the variability of real light illumination, different acquisition devices 

and multi-located users under real use conditions. Besides this, performance is not degraded too 

much when dealing with early diseases. Detailed numbers are depicted in Table 5 and in Figure 13.  



  

 

Figure 13: Average AuC, accuracy and FAR/FRR curves for 

Detailed algorithm results are shown 

 

Figure 14: Algorithm results under pilot conditions (cyan: detected 

6. Conclusion 

In this proposal a general use multi

algorithm was validated over three different kinds of disea

images.  The algorithm has been deployed on a

field conditions in a pilot study located in Spain and Germany
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: Average AuC, accuracy and FAR/FRR curves for rust, septoria and tan spot diseases obtained at real pilot 

conditions 

shown on the next pictures (Figure 14): 

: Algorithm results under pilot conditions (cyan: detected septoria, purple: detected rust)

multi-disease identification algorithm has been presented. The 

over three different kinds of diseases (rust, septoria and tan spot

deployed on a real smartphone application and validated under real 

located in Spain and Germany over more than 36 wheat 

 

diseases obtained at real pilot 

ust) 

has been presented. The 

an spot) on wheat 

application and validated under real 

wheat varieties. The 
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results on real field tests obtained AuCs (Area under the Receiver Operating Characteristic –ROC– 

Curve) higher than 0.8 when assuring global color constancy on the image by means of the developed 

algorithm succeeding on real time conditions and being able to cope with different diseases 

simultaneously. The AuC decreased to 0.7 when no color constancy algorithm is applied on the 

processing workflow. However, the use of shades of gray color constancy algorithm assures AuC 

values higher than 0.8. We have also validated algorithm performance when dealing with early 

diseases. Although there is a small degradation on the performance of the algorithm when dealing 

with early diseases, the algorithm can obtain almost the similar performance on early and late 

diseases. 

The preliminary hot-spot detection and its ulterior description by color and textural descriptors allow 

real time performance as only the suspicious regions are trained and described by the higher level 

classifiers and descriptors. 

The presented image processing technology provides new possibilities for the detection of weeds and 

diseases in earlier stages. Next steps will be focused on measuring how this early stage detection can 

help the user to react in time and plan for some preventive activities, e.g. crop protection application. 

Being able to react in an early stage could minimize the yield losses and therefore guarantee the food 

security in the upcoming years.  
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Highlights 

• Automatic Plant disease diagnosis for early disease symptoms 

• Novel image processing algorithm in combination with machine learning inference methods 

• A performance testing on wheat was performed with 7 mobile devices over a period of 3 

seasons. 

• Obtained results reveal AuC metrics higher than 0.80 for all the analyzed diseases. AuC 

measures the area under the ROC (Receiver Operating Characteristic) curve that measures the 

discriminative power of the classifier.  

 

 

 

 


