12,696 research outputs found

    High spatial resolution and high contrast optical speckle imaging with FASTCAM at the ORM

    Full text link
    In this paper, we present an original observational approach, which combines, for the first time, traditional speckle imaging with image post-processing to obtain in the optical domain diffraction-limited images with high contrast (1e-5) within 0.5 to 2 arcseconds around a bright star. The post-processing step is based on wavelet filtering an has analogy with edge enhancement and high-pass filtering. Our I-band on-sky results with the 2.5-m Nordic Telescope (NOT) and the lucky imaging instrument FASTCAM show that we are able to detect L-type brown dwarf companions around a solar-type star with a contrast DI~12 at 2" and with no use of any coronographic capability, which greatly simplifies the instrumental and hardware approach. This object has been detected from the ground in J and H bands so far only with AO-assisted 8-10 m class telescopes (Gemini, Keck), although more recently detected with small-class telescopes in the K band. Discussing the advantage and disadvantage of the optical regime for the detection of faint intrinsic fluxes close to bright stars, we develop some perspectives for other fields, including the study of dense cores in globular clusters. To the best of our knowledge this is the first time that high contrast considerations are included in optical speckle imaging approach.Comment: Proceedings of SPIE conference - Ground-based and Airborne Instrumentation for Astronomy III (Conference 7735), San Diego 201

    SOFIARoot: Simulation of the SOFIA/ANDES Setup

    Get PDF

    Discovery of faint double-peak Halpha emission in the halo of low redshift galaxies

    Full text link
    Aiming at the detection of cosmological gas being accreted onto galaxies of the local Universe, we examined the Halpha emission in the halo of 164 galaxies in the field of view of the Multi-Unit Spectroscopic Explorer Wide survey (\musew ) with observable Halpha (redshift < 0.42). An exhaustive screening of the corresponding Halpha images led us to select 118 reliable Halpha emitting gas clouds. The signals are faint, with a surface brightness of 10**(-17.3 pm 0.3) erg/s/cm2/arcsec2. Through statistical tests and other arguments, we ruled out that they are created by instrumental artifacts, telluric line residuals, or high redshift interlopers. Around 38% of the time, the Halpha line profile shows a double peak with the drop in intensity at the rest-frame of the central galaxy, and with a typical peak-to-peak separation of the order of pm 200 km/s. Most line emission clumps are spatially unresolved. The mass of emitting gas is estimated to be between one and 10**(-3) times the stellar mass of the central galaxy. The signals are not isotropically distributed; their azimuth tends to be aligned with the major axis of the corresponding galaxy. The distances to the central galaxies are not random either. The counts drop at a distance > 50 galaxy radii, which roughly corresponds to the virial radius of the central galaxy. We explore several physical scenarios to explain this Halpha emission, among which accretion disks around rogue intermediate mass black holes fit the observations best.Comment: pay attention to the last sentence of the abstract! Accepted for publication in Ap

    Optimum control strategies for maximum thrust production in underwater undulatory swimming

    Full text link
    Fish, cetaceans and many other aquatic vertebrates undulate their bodies to propel themselves through water. Numerous studies on natural, artificial or analogous swimmers are dedicated to revealing the links between the kinematics of body oscillation and the production of thrust for swimming. One of the most open and difficult questions concerns the best kinematics to maximize this later quantity for given constraints and how a system strategizes and adjusts its internal parameters to reach this maximum. To address this challenge, we exploit a biomimetic robotic swimmer to determine the control signal that produces the highest thrust. Using machine learning techniques and intuitive models, we find that this optimal control consists of a square wave function, whose frequency is fixed by the interplay between the internal dynamics of the swimmer and the fluid-structure interaction with the surrounding fluid. We then propose a simple implementation for autonomous robotic swimmers that requires no prior knowledge of systems or equations. This application to aquatic locomotion is validated by 2D numerical simulations

    Fossil group origins V. The dependence of the luminosity function on the magnitude gap

    Get PDF
    In nature we observe galaxy aggregations that span a wide range of magnitude gaps between the two first-ranked galaxies of a system (Δm12\Delta m_{12}). There are systems with gaps close to zero (e.g., the Coma cluster), and at the other extreme of the distribution, the largest gaps are found among the so-called fossil systems. Fossil and non-fossil systems could have different galaxy populations that should be reflected in their luminosity functions. In this work we study, for the first time, the dependence of the luminosity function parameters on Δm12\Delta m_{12} using data obtained by the fossil group origins (FOGO) project. We constructed a hybrid luminosity function for 102 groups and clusters at z0.25z \le 0.25. We stacked all the individual luminosity functions, dividing them into bins of Δm12\Delta m_{12}, and studied their best-fit Schechter parameters. We additionally computed a relative luminosity function, expressed as a function of the central galaxy luminosity, which boosts our capacity to detect differences, especially at the bright end. We find trends as a function of Δm12\Delta m_{12} at both the bright and faint ends of the luminosity function. In particular, at the bright end, the larger the magnitude gap, the fainter the characteristic magnitude MM^\ast. We also find differences at the faint end. In this region, the larger the gap, the flatter the faint-end slope α\alpha. The differences found at the bright end support a dissipationless, dynamical friction-driven merging model for the growth of the central galaxy in group- and cluster-sized halos. The differences in the faint end cannot be explained by this mechanism. Other processes, such as enhanced tidal disruption due to early infall and/or prevalence of eccentric orbits, may play a role. However, a larger sample of systems with Δm12>1.5\Delta m_{12} > 1.5 is needed to establish the differences at the faint end.Comment: 11 pages, 10 figures, accepted for publication in A&

    EVALUATING THE STRUCTURAL INTEGRITY OF THE SAINT ANTONIO BARREL VAULT IN THE FORTRESS OF ALMEIDA BY COMBINING LASER SCANNER AND LIMIT ANALYSIS

    Get PDF
    Under the framework of the modern theory of restoration, this paper shows the experimental results obtained during the structural diagnosis of one of the most important master gates inside the military modern complex of Almeida in Portugal: the inner master gate of Saint Antonio. This master gate was conceived with the aim of supporting the siege of an early modern army, using to this end a masonry framework filled by a natural soil able to absorb the impacts. However, this infill is promoting the disaggregation of the masonry and thus the reduction of its bearing capacity. In order to evaluate the current and future structural behaviour, it is proposed a method able to combine the terrestrial laser scanner with the limit analysis for masonry constructions. The results obtained by this combination shows that the major barrel vault has, in its current conservation state, enough bearing capacity to support an agglomeration of people. However, it is recommended a material restitution in order to recover the contact are between masonry blocks as well as to recover the architectural interpretation of the element

    Fossil Groups Origins III. The relation between optical and X-ray luminosities

    Get PDF
    This study is part of the FOssil Groups Origin (FOGO) project which aims at carrying out a systematic and multiwavelength study of a large sample of fossil systems. Here we focus on the relation between the optical luminosity (Lopt) and X-ray luminosity (Lx). Out of a sample of 28 candidate fossil systems, we consider a sample of 12 systems whose fossil classification has been confirmed by a companion study. They are compared with the complementary sample of 16 systems whose fossil nature is not confirmed and with a subsample of 102 galaxy systems from the RASS-SDSS galaxy cluster survey. Fossil and normal systems span the same redshift range 0<z<0.5 and have the same Lx distribution. For each fossil system, the Lx in the 0.1-2.4 keV band is computed using data from the ROSAT All Sky Survey. For each fossil and normal system we homogeneously compute Lopt in the r-band within the characteristic cluster radius, using data from the SDSS DR7. We sample the Lx-Lopt relation over two orders of magnitude in Lx. Our analysis shows that fossil systems are not statistically distinguishable from the normal systems both through the 2D KS test and the fit of the Lx-Lopt relation. The optical luminosity of the galaxy system does strongly correlate with the X-ray luminosity of the hot gas component, independently of whether the system is fossil or not. We conclude that our results are consistent with the classical "merging scenario" of the brightest galaxy formed via merger/cannibalism of other group galaxies, with conservation of the optical light. We find no evidence for a peculiar state of the hot intracluster medium.Comment: A&A, 12 pages, 4 figures, 3 tables, typos corr. and paper re-numbe
    corecore