4 research outputs found

    Cognitive Function with PCSK9 Inhibitors: A 24-Month Follow-Up Observational Prospective Study in the Real World—MEMOGAL Study

    Get PDF
    Introduction The cognitive safety of monoclonal antibody proprotein convertase subtilisin/kexin type 9 inhibitors (PCSK9i) has been established in clinical trials, but not yet in real-world observational studies. We assessed the cognitive function in patients initiating PCSK9i, and differences in cognitive function domains, to analyze subgroups by the low-density lipoprotein cholesterol (LDL-C) achieved, and differences between alirocumab and evolocumab. Methods This has a multicenter, quasi-experimental design carried out in 12 Spanish hospitals from May 2020 to February 2023. Cognitive function was assessed using the Montreal Cognitive Assessment (MoCA). Results Among 158 patients followed for a median of 99 weeks, 52% were taking evolocumab and 48% alirocumab; the mean change from baseline in MoCA score at follow-up was + 0.28 [95% CI (− 0.17 to 0.73; p = 0.216)]. There were no significant differences in the secondary endpoints—the visuospatial/executive domain + 0.04 (p = 0.651), naming domain − 0.01 (p = 0.671), attention/memory domain + 0.01 (p = 0.945); language domain − 0.10 (p = 0.145), abstraction domain + 0.03 (p = 0.624), and orientation domain − 0.05 (p = 0.224)—but for delayed recall memory the mean change was statistically significant (improvement) + 0.44 (p = 0.001). Neither were there any differences in the three stratified subgroups according to lowest attained LDL-C level—0–54 mg/dL, 55–69 mg/dL and ≥ 70 mg/dL; p = 0.454—or between alirocumab and evolocumab arms. Conclusion We did not find effect of monoclonal antibody PCSK9i on neurocognitive function over 24 months of treatment, either in global MoCA score or different cognitive domains. An improvement in delayed recall memory was shown. The study showed no differences in the cognitive function between the prespecified subgroups, even among patients who achieved very low levels of LDL-C. There were no differences between alirocumab and evolocumab. Registration ClinicalTtrials.gov Identifier number NCT04319081Open Access funding provided thanks to the CRUE-CSIC agreement with Springer NatureS

    Mapping genomic loci implicates genes and synaptic biology in schizophrenia

    Full text link
    Schizophrenia has a heritability of 60-80%1, much of which is attributable to common risk alleles. Here, in a two-stage genome-wide association study of up to 76,755 individuals with schizophrenia and 243,649 control individuals, we report common variant associations at 287 distinct genomic loci. Associations were concentrated in genes that are expressed in excitatory and inhibitory neurons of the central nervous system, but not in other tissues or cell types. Using fine-mapping and functional genomic data, we identify 120 genes (106 protein-coding) that are likely to underpin associations at some of these loci, including 16 genes with credible causal non-synonymous or untranslated region variation. We also implicate fundamental processes related to neuronal function, including synaptic organization, differentiation and transmission. Fine-mapped candidates were enriched for genes associated with rare disruptive coding variants in people with schizophrenia, including the glutamate receptor subunit GRIN2A and transcription factor SP4, and were also enriched for genes implicated by such variants in neurodevelopmental disorders. We identify biological processes relevant to schizophrenia pathophysiology; show convergence of common and rare variant associations in schizophrenia and neurodevelopmental disorders; and provide a resource of prioritized genes and variants to advance mechanistic studies

    Mapping genomic loci implicates genes and synaptic biology in schizophrenia

    No full text
    corecore