4,550 research outputs found

    Super-spreading Events and Contribution to Transmission of MERS, SARS, and COVID-19

    Get PDF
    There is no clear definition for the term ‘super-spreader’ or ‘super-spreading event’. The World Health Organization refers to a super-spreader as a patient (or an event) that may transmit infection to a larger number of individuals than is usual by one individual (or event). In the severe acute respiratory syndrome (SARS) situation, a super-spreading event was defined as the transmission of SARS to at ≥8 contacts, and other authors defined this as individuals infecting an unusually large number of secondary cases [ 1 , 2 ]. A super-spreading event could merely be defined as an event in which one patient infects far more people than an average patient does, which is estimated by the basic reproduction number (R0)

    Controlled nucleation of topological defects in the stripe domain patterns of Lateral multilayers with Perpendicular Magnetic Anisotropy: competition between magnetostatic, exchange and misfit interactions

    Full text link
    Magnetic lateral multilayers have been fabricated on weak perpendicular magnetic anisotropy amorphous Nd-Co films in order to perform a systematic study on the conditions for controlled nucleation of topological defects within their magnetic stripe domain pattern. A lateral thickness modulation of period ww is defined on the nanostructured samples that, in turn, induces a lateral modulation of both magnetic stripe domain periods λ\lambda and average in-plane magnetization component MinplaneM_{inplane}. Depending on lateral multilayer period and in-plane applied field, thin and thick regions switch independently during in-plane magnetization reversal and domain walls are created within the in-plane magnetization configuration coupled to variable angle grain boundaries and disclinations within the magnetic stripe domain patterns. This process is mainly driven by the competition between rotatable anisotropy (that couples the magnetic stripe pattern to in-plane magnetization) and in-plane shape anisotropy induced by the periodic thickness modulation. However, as the structural period ww becomes comparable to magnetic stripe period λ\lambda, the nucleation of topological defects at the interfaces between thin and thick regions is hindered by a size effect and stripe domains in the different thickness regions become strongly coupled.Comment: 10 pages, 7 figures, submitted to Physical Review

    Automating decision making to help establish norm-based regulations

    Full text link
    Norms have been extensively proposed as coordination mechanisms for both agent and human societies. Nevertheless, choosing the norms to regulate a society is by no means straightforward. The reasons are twofold. First, the norms to choose from may not be independent (i.e, they can be related to each other). Second, different preference criteria may be applied when choosing the norms to enact. This paper advances the state of the art by modeling a series of decision-making problems that regulation authorities confront when choosing the policies to establish. In order to do so, we first identify three different norm relationships -namely, generalisation, exclusivity, and substitutability- and we then consider norm representation power, cost, and associated moral values as alternative preference criteria. Thereafter, we show that the decision-making problems faced by policy makers can be encoded as linear programs, and hence solved with the aid of state-of-the-art solvers

    The socio-ecology of zoonotic infections

    Get PDF
    AbstractThe resurgence of infectious diseases of zoonotic origin observed in recent years imposes a major morbidity/mortality burden worldwide, and also a major economic burden that extends beyond pure medical costs. The resurgence and epidemiology of zoonoses are complex and dynamic, being influenced by varying parameters that can roughly be categorized as human-related, pathogen-related, and climate/environment-related; however, there is significant interplay between these factors. Human-related factors include modern life trends such as ecotourism, increased exposure through hunting or pet owning, and culinary habits, industrialization sequelae such as farming/food chain intensification, globalization of trade, human intrusion into ecosystems and urbanization, significant alterations in political regimes, conflict with accompanying breakdown of public health and surveillance infrastructure, voluntary or involuntary immigration, loosening of border controls, and hierarchy issues in related decision-making, and scientific advances that allow easier detection of zoonotic infections and evolution of novel susceptible immunocompromised populations. Pathogen-related factors include alterations in ecosystems and biodiversity that influence local fauna synthesis, favouring expansion of disease hosts or vectors, pressure for virulence/resistance selection, and genomic variability. Climate/environment-related factors, either localized or extended, such as El Niño southern oscillation or global warming, may affect host–vector life cycles through varying mechanisms. Emerging issues needing clarification include the development of predictive models for the infectious disease impact of environmental projects, awareness of the risk imposed on immunocompromised populations, recognition of the chronicity burden for certain zoonoses, and the development of different evaluations of the overall stress imposed by a zoonotic infection on a household, and not strictly a person

    Ozone as oxidation agent in cyclic activation of biochar

    Full text link
    Granular activated carbons were produced from grape seed biochar by cyclic activation with ozone. In each cycle, char was first oxidized by exposure to ozone and then subjected to high temperature in inert atmosphere to desorb oxygen groups formed. The study assessed the influence of operating conditions in the development of porosity, from a starting biochar with narrow microporosity (SBET: 47 m2 g− 1, SDA: 505 m2g− 1) prepared by flash pyrolysis of grape seed at 800 °C. The variables studied were the number of cycles applied and the oxidation and desorption temperatures (250–275 and 850–950 °C, respectively). High oxidation temperatures led to higher burn-off, which was also found to increase with the number of activation cycles. The burn-off needed to achieve a high surface area was lower than in conventional physical activation. After 7–9 activation cycles, activated carbons with SBET higher than 1200 m2 g− 1 and SDA above 1500 m2 g− 1 were obtained. The use of ozone resulted in mainly microporous activated carbons (0.37–0.52 cm3 g− 1) with very low contribution of mesopores (< 0.04–0.07 cm3 g− 1). The mean micropore size increased with the number of activation cycles due to pore widening, while mesopore mean size decreased along the cycles. The activated carbons showed a unique granular morphology with a hollow core and a porous shell, which is maintained even after 10 activation cyclesThe authors greatly appreciatefinancial support from the Spanish Ministerio de Ciencia e Innovación (CTQ2012-32821

    Activation of waste tire char by cyclic liquid-phase oxidation

    Full text link
    Activation of waste tire char was performed by successive cycles of liquid-phase oxidation followed by desorption in inert atmosphere at 650 °C. Significant differences in porosity development were found for the three oxidizing agents evaluated: nitric acid > hydrogen peroxide > ammonium persulfate. A linear increase of burn-off with the number of cycles was observed, reaching values between 63 and 90% after 15 activation cycles. Within the range tested, a higher concentration of the oxidizing agent (15 vs 30% v) led to higher burn-off, especially in the case of H2O2, however no differences were observed in terms of BET surface area (S BET) developed per unit of burn-off. SBET values around 750-400 m2/g were obtained by activation with HNO3 and H2O2, respectively. The activated carbons prepared by activation with HNO3 showed much higher mesopore volume (0.47-0.60 cm3/g) and some contribution of microporosity (0.03-15 cm 3/g). The mesopore size distribution in the samples activated with HNO3 (2-7 nm) was displaced to lower values than in the case of H2O2 (4-10 nm). The comparison with cyclic activation with air shows that liquid-phase oxidation provides higher porosity development, especially in the mesopore region but at the expense of higher burn-offThe authors greatly appreciate financial support from the Spanish Ministerio de Ciencia e Innovación (CTQ2009-09983) and the Ministerio de Economía y Competitividad (CTQ2012-32821
    corecore