95 research outputs found

    Bone Regeneration in Implant Dentistry: Role of Mesenchymal Stem Cells

    Get PDF
    This chapter focuses on a review of the activity of non-embryonic mesenchymal stem cells used to regenerate jaw bones in dentistry. Recent research of non-embryonic stem cells provides new possibilities for noninvasively obtaining new autologous bone from stem cells provided by various tissues from the same patient. Disaggregation of biologic tissue harvested from the patients during surgery permits extraction of stem cells from a small sample of connective tissue obtained from the patient’s lingual mucosa or from the postextraction surgical site where the endosseous implant will be inserted

    Differences between panoramic and Cone Beam-CT in the surgical evaluation of lower third molars

    Get PDF
    The aim of this study was to evaluate the ability to identify the contiguity between the root of the mandibular third molar and the mandibular canal (MC) in panoramic radiographs compared with Cone Beam-CT. Panoramic radiographs of 326 third molars and CBCT radiographs of 86 cases indicated for surgery and considered at risk were evaluated. The following signs were assessed in panoramic radiographs as risk factors: radiolucent band, loss of MC border, change in MC direction, MC narrowing, root narrowing, root deviation, bifid apex, superimposition, and contact between the root third molar and the MC. Radiographic signs associated with absence of MC cortical bone are: radiolucent band, loss of MC border, change in MC direction, and superimposition. The number of risk factors was significantly increased with an increasing depth of inclusion. CBCT revealed a significant association between the absence of MC cortical bone and a lingual or interradicular position of the MC. In cases in which panoramic radiographs do not exclude contiguity between the MC and tooth, careful assessment the signs and risks on CBCT radiographs is indicated for proper identification of the relationships between anatomic structures

    Micro-Raman Spectroscopy of Dental Implants Subjected to Different Surface Treatments

    Get PDF
    The aim of the study was to qualitatively investigate the structure of the surface layer of TiO2 on dental implants made of Ti-6Al-4V subjected to different manufacturing treatments. M (machined), B (Al2O3-blasted), E (HNO3HF-etched), B + E and A (B + E + anodized) implants and a further group receiving the same treatments as the first group with the addition of a final decontamination with cold plasma were included in the study. Examination was performed using micro-Raman spectroscopy. The surface treatments evaluated did not achieve the formation of crystalline TiO2. The increase in the complexity of surface treatment produced a proportional increase in the thickness of amorphous TiO2 oxide. In the B + E group, the plasma treatment enhanced the amorphous oxide thickness of TiO2. The other surfaces treated by plasma decontamination did not show a difference to the respective untreated ones. The investigated surface treatments did not change the crystalline cage of TiO2 in Ti-6Al-4V implants but affected the thickness of the oxide layer. The biological response could be influenced by different oxide thicknesses. Additional information on superficial TiO2 structural organization can be obtained by micro-Raman evaluation of dental implants. Dental implants with B + E + plasma and A superficial treatments allowed the maximum formation of the amorphous oxide thickness

    Nanofeatured Titanium Surfaces for Dental Implantology: Biological Effects, Biocompatibility, and Safety

    Get PDF
    Nanotechnology enables the control and modification of the chemical and topographical characteristics of materials of size less than 100 nm, down to 10 nm. The goal of this review is to discuss the role of titanium substrates as nanoscale surface modification tools for improving various aspects of implantology, including osseointegration and antibacterial properties. Techniques that can impart nanoscale topographical features to endosseous implants are described. Since the advent of nanotechnology, cellular specific functions, such as adhesion, proliferation, and differentiation, have been better understood. By applying these technologies, it is possible to direct cellular responses and improve osseointegration. Conversely, modulating surface features by nanotechnology could have the effect of decreased bacterial colonization

    Study of the effects of different biomaterials on osteogenic differentiation of oral-periosteal cells

    Get PDF
    Bone regeneration is currently one of the most important challenges for regenerative medicine and it is considered an ideal clinical strategy in the maxillo-facial area [1]. Bone resorption of alveolar crest occurring after tooth extraction leads to several risks for future treatments, including dental implants. For this reason, alveolar ridge preservation (ARP) has become a key component of contemporary clinical dentistry. Several clinical techniques and bone substitute materials can be used to fill the socket after tooth extraction. For all of them, the principle aim is to keep the shape and the size of the bone socket of the extracted tooth allowing inserting the dental implants [2]. The goal of our study was to compare different biocompatible scaffolds based on PLGA (Fisiograft®), Bioglass (Activioss®) and collagen (Sombrero®) in an in vitro model of tissue engineering for dental applications. The cells used in our study derived from Periosteum obtained from four different patients that underwent socket preservation selected by the School of Dentistry of the University of Pavia, previous informed consent. We created bio-complexes constituted by mesenchymal-periosteal cells seeded on different types of biomaterials and we performed adhesion, morphological, proliferative and bone differentiation analyses at different time points (7, 14 and 28 days of culture) in proliferative and osteogenic conditions. Bone differentiation was evaluated by qRT-PCR on genes involved in osteoblast development, like BMP-2, Osteocalcin and Periostin. Our results demonstrated that Sombrero® enhanced adhesion and proliferation of periosteal cells, as highlighted by Haematoxylin-Eosin staining and XTT test (3 and 7 days). Long-term studies (14 and 28 days) demonstrated that periosteal differentiation is about the same among the different materials tested. From these preliminary studies we can conclude that it could be advantageous the clinical use of both collagenic and PLGA scaffolds in order to ameliorate initial colonization and subsequent mechanical support in maxillo-bone regeneration. This work was supported by grant from NATO 2016 (“RAWINTS” (G-984961): RApid Skin Wound healing by INtegrated Tissue engineering and Sensing)

    Autologous Periosteum-Derived Micrografts and PLGA/HA Enhance the Bone Formation in Sinus Lift Augmentation

    Get PDF
    Sinus lift augmentation is a procedure required for the placement of a dental implant, whose success can be limited by the quantity or quality of available bone. To this purpose, the first aim of the current study was to evaluate the ability of autologous periosteum-derived micrografts and Poly(lactic-co-glycolic acid) (PLGA) supplemented with hydroxyl apatite (HA) to induce bone augmentation in the sinus lift procedure. Secondly, we compared the micrograft's behavior with respect to biomaterial alone, including Bio-Oss® and PLGA/HA, commercially named Alos. Sinus lift procedure was performed on 24 patients who required dental implants and who, according to the study design and procedure performed, were divided into three groups: group A (Alos + periosteum-derived micrografts); group B (Alos alone); and group C (Bio-Oss® alone). Briefly, in group A, a small piece of periosteum was collected from each patient and mechanically disaggregated by Rigenera® protocol using the Rigeneracons medical device. This protocol allowed for the obtainment of autologous micrografts, which in turn were used to soak the Alos scaffold. At 6 months after the sinus lift procedure and before the installation of dental implants, histological and radiographic evaluations in all three groups were performed. In group A, where sinus lift augmentation was performed using periosteum-derived micrografts and Alos, the bone regeneration was much faster than in the control groups where it was performed with Alos or Bio-Oss® alone (groups B and C, respectively). In addition, the radiographic evaluation in the patients of group A showed a radio-opacity after 4 months, while after 6 months, the prosthetic rehabilitation was improved and was maintained after 2 years post-surgery. In summary, we report on the efficacy of periosteum-derived micrografts and Alos to augment sinus lift in patients requiring dental implants. This efficacy is supported by an increased percentage of vital mineralized tisssue in the group treated with both periosteum-derived micrografts and Alos, with respect to the control group of Alos or Bio-Oss® alone, as confirmed by histological analysis and radiographic evaluations at 6 months from treatment

    Stereolytographic surgical stents

    No full text
    Il lavoro descrive l'uso delle guide stereolitografiche e del virtual planning in implantologia osteointegrat

    Atlante di Radiologia Odontoiatrica a Fini Diagnostici

    No full text
    L’indagine radiografica in ambito odontostomatologico rappresenta un ausilio indispensabile affinché l’operatore possa formulare una diagnosi di presunzione posata su basi oggettivabili. La complessità del sistema anatomico maxillo-facciale impone il ricorso a differenti tecniche di indagine che vanno dalle semplici radiografie endorali alle più sofisticate tecniche computerizzate. La programmazione di interventi chirurgici, non solo di: necessità ma anche di elezione, richiede la massima precisione nell’individuare le strutture morfologicamente più complesse ed i rapporti esistenti, nelle variabili anatomiche individuali, tra le strutture orali e quelle limitrofe. La conoscenza delle tecniche da parte dell’odontoiatra consente non solo una più corretta lettura dei radiogrammi, ma permette soprattutto l’instaurarsi di un rapporto proficuo di collaborazione con la figura del radiologo. La complessità della zona anatomica richiede, spesso, di dover ricorrere all’aiuto dei colleghi radiologi per l’esecuzione di indagini radiografiche complesse e specialistiche. Al radiologo viene richiesta una specifica preparazione perché possa rispondere con la massima competenza alle richieste degli odontostomatologi. Nell’ambito di questa collaborazione spetta all’odontoiatra il redigere una richiesta dettagliata e motivata affinché il radiologo possa adeguatamente scegliere le tecniche e le proiezioni a suo parere più adatte al singolo caso
    corecore