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Abstract

This chapter focuses on a review of the activity of non-embryonic mesenchymal stem
cells used to regenerate jaw bones in dentistry. Recent research of non-embryonic stem
cells provides new possibilities for noninvasively obtaining new autologous bone from
stem cells provided by various tissues from the same patient. Disaggregation of biologic
tissue harvested from the patients during surgery permits extraction of stem cells from
a small sample of connective tissue obtained from the patient’s lingual mucosa or from
the postextraction surgical site where the endosseous implant will be inserted.

Keywords: Bone regeneration, mesenchymal stem cells, scaffold, micrografts, socket
preservation

1. Bone regeneration in implant dentistry

1.1. Bone components

Bone is formed by organic and inorganic components. Two-thirds of the volume comprises
inorganic salts, including calcium, phosphate, carbonate, citrate, and hydroxyl ions (magnesi‐
um, sodium, and fluoride) in the form of crystals of hydroxyapatite [1]. The organic portion
comprises 99% collagen type I and growth factors, such as osteocalcin, osteonectin, phospho‐
proteins, proteoglycans, and bone morphogenetic proteins [2].

Bone also includes cellular components, such as pre-osteoblasts, osteoblasts, osteocytes, and
osteoclasts. Osteoblasts arise from mesenchymal pluripotent cells, which are cuboidal
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mononuclear cells located along the bony margins, and are able to form new bone tissue. About
10–20% of osteoblasts are trapped within the matrix they produce by developing into osteo‐
cytes, which are considered mature osteoblasts. Osteocytes are smaller than osteoblasts, and
have a higher nucleus-to-cytoplasm ratio and a larger number of extensions that allow for
intercellular communication. Osteocytes are likely the cells responsible for bone regeneration
[3]. Osteoclasts are large multinucleated cells that are polarized, have an average lifespan of
15–20 days, and are derived from bone marrow monocytes [4]. Osteoclasts facilitate bone
resorption by reducing the surrounding pH.

1.1.1. Stem cells—mesenchymal stem cells

Stem cells are characterized by their ability to renew by cell division and to differentiate into
a diverse range of specialized cell types. The two broad types of mammalian stem cells are
embryonic stem cells, which are found in blastocysts, and adult stem cells, which are found in
adult tissues such as the bone marrow. In adult organisms, stem cells give rise to progenitor
cells that act as a repair system for the body by replenishing specialized cells and tissues.
Because adult stem cells are obtained from a developed organism, their use in research and
therapy is not as controversial as that of embryonic stem cells, which entail the destruction of
an embryo [5].

Mesenchymal stem cells (MSCs) are multipotent adult stem cells with unique biologic
properties that are typically associated with their mesodermal lineage (adipogenic, chondro‐
genic, osteogenic, or myogenic) [6–8]. MSCs were first discovered in 1968 by Friedenstein et
al. [9], and are defined as adherent fibroblast-like cells that reside in the bone marrow and are
capable of differentiating into bone. MSCs and an adequate blood supply are essential for the
bone deposition process and healing. MSCs also contribute to the homeostasis of various
tissues, including bone, in adults [10].

MSCs can be expanded in vitro for several passages, are easily accessible, and possess minimal
immunogenic or tumorigenic risks, and are thus an excellent cell source of stem cells used in
dental, craniofacial, and orthopedic regenerative surgery [11].

In 2006, the International Society for Cellular Therapy established the following definition of
MSCs [12]:

1. Cells that are adherent to plastic under standard tissue-culture conditions;

2. Cells that are positive for surface markers CD105, CD73, and CD90, but negative for CD34,
CD45, CD14, or CD11b, CD79a, or CD19, and human leukocyte antigen-D-related (HLA)-
DR surface molecules;

3. Cells with the capacity to differentiate into osteoblasts, chondrocytes, and adipocytes;

MSCs, which represent ~10% of human stem cells, are rare and heterogeneous; they are part
of the connective tissue and support hemopoiesis [13]. MSCs can be expanded in vitro and
rapidly reach the desired cell counts for use in vivo [14].
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Despite having some common features, MSCs have different characteristics depending on the
tissue of origin. MSCs can be isolated from several different tissues, including bone marrow
[15], placenta, cord blood [16], adipose tissue [17], muscle [18], periosteum [19], synovium [20],
deciduous teeth [21], and brain, kidney, heart, epidermis, and periodontal ligaments [22–24].
Among these, bone marrow and adipose tissue are the most commonly used sources of MSCs
because of their relative ease of harvesting. MSCs can differentiate into osteoblasts, adipocytes,
chondrocytes, myoblasts, cardiomyocytes, hepatocytes, neurons, astrocytes, endothelial cells,
fibroblasts, and stromal cells [25].

2. Bone regeneration

Since Horwitz et al. [26] first demonstrated that MSCs can improve osteogenesis in children
with osteogenesis imperfecta, the role of MSCs in bone formation and regeneration has been
intensively studied. Studies performed in several animal models revealed that the transplan‐
tation of MSCs improves bone regeneration and healing of bony defects [27, 28]. The thera‐
peutic options clinically available for bone reconstruction and regeneration, however, are often
unsatisfactory due to morbidity at the donor site or the complexity of allograft procedures.

Bone regeneration in maxillofacial reconstruction is one of the most important applications of
MSCs [29]. The repair of craniofacial bone defects remains a challenge, however, and the results
depend on the size of the defect, the quality of the soft tissues that cover the defect, and the
reconstructive techniques used. In Europe, ~1.5 million patients undergo craniofacial recon‐
structions annually; ~20% of them continue to experience functional deficiency despite the
intervention, and 30,000 patients per year develop donor-site morbidity following oral and
maxillofacial reconstruction [30].

Traditional bone regeneration techniques involve autologous, homologous, heterologous, or
allogeneic grafts. Autologous bone grafts are considered the best option for damaged tissue
repair because of the low risk of immunogenicity or disease transmission compared with
allografts (genetically different donors from the same species) or xenografts (donors from
another species). Autologous bone grafts are limited due to the scarcity of available autologous
tissue for repairing larger bone defects, donor-site morbidity, and potential wound-based
infections, as well as the prolonged operative times. In addition, autologous bone grafts require
additional surgical procedures, which increase the risk of both donor-site morbidity and
significant resorption [31]. Alternative therapies continue to be explored [32], and researchers
are attempting to identify the best material for bone regeneration.

Bone regeneration following the use of stem cells occurs through two mechanisms: a direct
mechanism, which comprises the integration and differentiation into tissue-specific cells, and
begins when transplanted cells take root in the target tissue [33]; and an indirect mechanism,
which involves paracrine effects [34].

Differentiation of MSCs into osteoblasts was demonstrated in vitro by cultivating the cells
in the presence of ascorbic acid, inorganic phosphate (beta-glycerophosphate), and dexa‐
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methasone. In vivo studies suggest that transplanted adult stem cells can integrate into
tissues that are different from those of the donor and, in some cases, contribute to their
regeneration [35]. Demonstrating the in vivo differentiation of implanted cells is challeng‐
ing, and researchers often assume that differentiation is the result of interactions between
grafted cells and host-site cells, but the capacity of MSCs to release a number of trophic
factors could also explain their therapeutic benefit.

Some recent reports suggest that the therapeutic properties of paracrine factors are a common
feature of stem cells [36]. The paracrine effect could contribute to bone regeneration via the
secretion of trophic and angiogenic molecules such as angiopoietin (Ang)-1, Ang-2, Ang-like-1,
Ang-like-2, Ang-like-3, Ang-like-4, vascular endothelial growth factor (VEGF), and fibroblast
growth factor-2. These molecules can activate local MSCs, promote tissue regeneration and
angiogenesis [37], and inhibit fibrosis, apoptosis, and inflammation [38, 39]. They also have
neurogenic, neuroprotective, and synaptogenic effects [40, 41]. Because the survival and
differentiation of MSCs at the site of the lesion is limited, paracrine signaling is considered to
be the primary mechanism of their therapeutic effects [42]. This hypothesis is supported by in
vitro and in vivo studies showing that many cell types respond to paracrine signaling from
MSCs, which leads to the modulation of a large number of cellular responses, such as survival,
proliferation, migration, and gene expression [39].

The secretion of bioactive factors is thought to play a critical role in the paracrine activity of
MSCs. These factors and cytokines can be collected in a conditioned medium (CM), which,
when transplanted into animal models of different diseases, has effects that are similar to those
exerted by MSCs and can increase the tissue-repair process in acute myocardial infarction [43],
wound healing [44, 45], and neuroprotection [46]. Encouraging results have also been obtained
following the graft of MSCs obtained from the bone marrow cleft at the level of the maxillary
sinus and alveolar schisis [47, 48].

Preliminary studies of bone regeneration used MSC populations that were not expanded from
bone marrow due to the reduced number of MSCs in the bone marrow (0.01% of the bone
marrow cell population). The use of unexpanded MSCs, however, produced unpredictable
results [49], and later advances made it possible to cultivate and characterize MSCs. The
osteogenic potential of expanded and purified MSCs has been studied extensively, but with
mixed results [50, 51]. Factors that may affect the results relate to the donor site, blood supply,
and inadequate osteoblastic differentiation of the implanted cells.

In summary, stem cells are effective for tissue regeneration and future research is warranted
despite the low number of clinical studies compared to those in preclinical animal models. The
use of MSCs is still limited because of their low accessibility, difficult collection, and poor long-
term stability. Stem cells are used mainly in combination with scaffolds or biomaterials to
improve their efficacy and stability. Scaffold material is often used to provide mechanical
support and as a substrate for cell attachment, proliferation, and differentiation. Regardless of
the scaffold used for bone reconstruction, however, bone healing depends mainly on two
pivotal factors: the capacity to recruit progenitor cells to the injury site and the presence of
healthy vasculature near the injury site. Researchers have identified several different tissue
types that can be considered valid MSC donors.
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2.1. Dental pulp stem cells

Dental pulp is a source of neural crest-derived stem cells that is easily accessible and charac‐
terized by low morbidity after collection [52, 53]. Dental pulp comprises both ectodermic and
mesenchymal components, and is divided into four layers (outer to inner). The external layer
is made up of odontoblast-producing dentin. The second layer, called the “cell-free zone,” is
poor in cells and rich in extracellular matrix. The third layer, called the “cell-rich zone,”
contains progenitor cells that exhibit plasticity and pluripotent capabilities [52]. Finally, the
inner layer comprises the vascular area and nerve plexus.

In the context of the oral and maxillofacial area, dental pulp stem cells (DPSCs) and periosteal
stem cells may be optimal alternatives to MSCs and display high potential for differentiating
into a variety of cell types, including osteocytes, suggesting their effective use in bone
regeneration, although clinical studies are limited. In addition to DPSCs and periosteal stem
cells, adipose tissue also serves as a source of MSCs [17]. In fact, adipose-derived stromal cells
can differentiate into chondrocytes, osteocytes, or myocytes, as indicated by several studies in
animal models [54–57], although clear and conclusive data about their osteogenic potential are
limited.

In 2005, Laino et al. [58] successfully isolated and selected a distinctive and highly enriched
population of stem cells derived from dental pulp in adult humans. This stem cell population
was self-expanding and differentiated into pre-osteoblasts able to self-maintain and renew.
These stem cells differentiated into osteoblasts and produced living autologous fibrous bone
tissue in vitro after 50 days of culture. Transplantation of this tissue in vivo led to the formation
of lamellar bone with osteocytes without the need for scaffolding. The differentiated cells and
living autologous fibrous bone could be frozen at −80°C and stored for extended periods of
time with no clear effect on their bone-forming ability. The same research group subsequently
demonstrated that DPSCs differentiate into osteoblasts that secrete abundant extracellular
matrix [59].

In 2007, d’Aquino et al. [60] provided direct evidence that osteogenesis and angiogenesis
mediated by human DPSCs are regulated by distinct mechanisms that lead to the organization
of adult bone tissue after stem cell transplantation. In this study, stromal stem cells from human
dental pulp were extracted, cultivated, and characterized in vitro. After 30 days of culture, the
cells began to differentiate, lost their stem cell markers, and expressed differentiation markers.
After 40 days, the cells differentiated into two cytotypes from a common progenitor: osteogenic
progenitor cells (70% of total cells) and endothelial progenitor cells (EPCs, 30%), demonstrating
synergic differentiation into osteoblasts and endotheliocytes. After 50 days, woven bone was
obtained in vitro and its transplantation into immunocompromised rats resulted in a tissue
structure with an integral blood supply similar to that of human adult bone. These findings
suggest that osteogenesis and vasculogenesis are interdependent, and that this process is
essential to obtain adult bone tissue suitable for transplantation and surgical or clinical
applications in tissue repair.

DPSCs grafted into immunosuppressed rats generated complete and well-vascularized
lamellar bone [61]. DPSCs are easily managed because they have a long lifespan, can be safely
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cryopreserved, and are able to interact with biomaterials [62]. Finally, in vitro and in vivo
experiments revealed that both the quality and quantity of bone regenerated by DPSCs
blended from stem cells and biomaterials [58, 60, 61, 63].

DPSCs can be applied for oral and maxillofacial bone repair in the maxillofacial area and, on
appropriate resorbable scaffolds, promote the formation of an efficient biocomplex in patients
with a mandibular defect, as reported by d’Aquino et al. [60]. In that study, a biocomplex
constructed from dental pulp stem/progenitor cells and a collagen-sponge scaffold was used
for oral and maxillofacial bone tissue repair. Stem/progenitor cells obtained from the upper
third of molars previously extracted were gently placed with a syringe onto a collagen-sponge
scaffold and used to fill the space left by the lower third of the molar extraction procedure.
Thirty days after surgery, X-ray controls exhibited a high rate of mineralization; 3 months after
the surgery, samples collected from the regeneration site showed well-organized and well-
vascularized bone with a lamellar architecture surrounding the Haversian canals. Bone from
control sites was immature and showed fibrous bone entrapped among new lamellae,
incomplete and large Haversian canals, and evidence of bone resorption. Moreover, immu‐
nofluorescence analyses showed high levels of bone morphogenetic protein-2 and VEGF in
regeneration samples. This clinical study demonstrated that dental pulp stem/progenitor cells
can be used for oral and maxillofacial bone repair and that collagen sponges can be considered
an optimal support for stem/progenitor cells in cell-guided regeneration.

The same group published a 3-year follow-up [64]. Histology and in-line holotomography
revealed that regenerated bone was uniformly vascularized and qualitatively compact rather
than the physiologic type of bone found in that region—cancellous (i.e., spongy). The authors
speculated that the regeneration of compact bone probably occurs because grafted DPSCs do
not follow the local signals of the surrounding spongy bone. Although the bone that regener‐
ated at the graft site was not the proper type found in the mandible, it seemed to have a positive
clinical outcome because it created steadier mandibles, increased implant stability, and may
have improved resistance to mechanical, physical, chemical, and pharmacologic agents.

Although the use of DPSCs is valid for tissue regeneration in the maxillofacial area, the
identification of an accessible site from which to collect these cells can be challenging, and the
amount of cells that can be obtained is very limited. DPSCs can be cultured by two methods.
In the enzyme-digestion method, pulp tissue is collected under sterile conditions and digested
with the appropriate enzymes, and the resulting cell suspensions are seeded in culture dishes
[65]. In the explant outgrowth method, the extracted pulp tissues are cut, anchored via
microcarriers onto a suitable substrate, and directly incubated in culture dishes [66]. From a
clinical point of view, these methods are not appropriate for therapeutic applications because
of the manipulation of dental pulp. A new, efficient, and safe method for isolating dental pulp
was reported by Brunelli in 2013 [67], in which a new instrument called a Rigenera® (Torino,
Italy) machine was used to create micrografts of disaggregated dental pulp that was subse‐
quently poured onto a collagen sponge. This micrograft was injected into the sinus cavity, and
4 months after the intervention newly formed bone was observed with twice the mineral
density of native bone [67].
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2.2. Periosteal stem cells

In addition to dental pulp, the periosteum is a surprising source of stem cells. After bone
fracture in animal models, periosteal progenitor cells undergo an impressive expansion,
followed by differentiation into osteoblasts and chondrocytes [68]. This remarkable property
of the periosteum has prompted extensive research into the use of periosteum-derived cells
for regenerative approaches, and preclinical studies have demonstrated the potential of these
cells. The success of periosteal cells in preclinical animal models has also given rise to several
exploratory clinical studies using ex vivo expanded periosteal cells for bone regeneration.

In 1992, chick tibial periosteal cells were cultured, combined with porous calcium phosphate
ceramics, and subcutaneously implanted into athymic mice [69]. These cells eventually gave
rise to bone tissue via two different mechanisms. Intramembranous bone formation occurred
early in the peripheral pores of the ceramics, and endochondral bone formation occurred later
in the central pores. These results raised the possibility that composite grafts of cultured
periosteal-derived cells and porous ceramics could be clinically used as bone-graft substitutes
for bone augmentation or regeneration.

In 2001, Vacanti et al. [70] first used culture-expanded periosteal cells derived from the radius
in combination with a porous hydroxyapatite scaffold to replace the distal phalanx of the
thumb. In this study, coral alone seeded with cells derived from the periosteum and placed in
the subcutaneous tissue that was not adjacent to native bone formed new bone.

The use of periosteum-derived bony matrix for augmentation in the posterior maxilla before
implantation results in bone formation 4 months after transplantation with trabecular bone
containing viable osteocytes [71, 72]. The graft provides a reliable basis for the simultaneous
or secondary insertion of dental implants.

Springer et al. [73] compared mandibular periosteum cells that were cultured and seeded onto
a collagen matrix and maxillary bone cells that were cultured and seeded onto natural bone
minerals. They concluded that the first method produced a significantly higher amount of new
living bone.

Taken together, these reports demonstrate the clinical potential of periosteal-derived cells for
bone regeneration therapies. The last three studies described, however, did not use stem cells
but rather only cultures of differentiated periosteal cells.

2.3. Bone marrow-derived MSCs

Bone marrow-derived mesenchymal stem cells (BMSCs) are a readily available and abundant
source of cells for tissue-engineering applications. BMSCs may be useful tools for regenerating
bone, but the method of bone marrow aspiration from patients is associated with significant
morbidity at the donor site [74].

BMSCs can differentiate into osteoblasts in vitro [75] and have osteogenic ability in vivo [76].
The addition of BMSCs to a biomaterial improves the quality of regenerated lamellar bone [77].
In 2008, BMSCs were successfully used in association with biphasic hydroxyapatite/β-
tricalcium phosphate in a sinus-augmentation procedure [78].
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In a recent study [79], tissue repair cells isolated from bone marrow were successfully used to
repair bone defects in a human model. In this study, bone marrow cells were collected,
cultivated, and characterized. Flow cytometry demonstrated the presence of mesenchymal
and vascular phenotypes. The cellular suspension, carried by a gelatin sponge, was implanted
in a postextraction site and covered by a resorbable collagen membrane. Six weeks after the
implantation, biopsy revealed the presence of highly vascularized and mineralized bone
tissue. McAllister et al. [5] used an MSC-heterologous bone graft harvested from cadavers for
sinus-augmentation procedures. The authors demonstrated the presence of MSCs in the
commercial bone preparation derived from cadavers and harvested within 24 h of death and
stored at −80 °C. Moreover, they rapidly formed bone from a commercially available cellular
bone matrix that contained heterologous MSCs.

In one study [80], researchers seeded Geistlich Bio-Oss (GeistlichPharma North America,
Princeton, NJ, USA) with stem cells and found that this construct was superior to Bio-Oss
mixed with autogenous bone in terms of bone formation 3–4 months after surgery. This study,
however, presented some issues regarding data reporting and statistical analysis.

In a well-documented preliminary report, Behnia et al. [81] used BMSCs in association with
platelet-rich plasma. They used biphasic hydroxyapatite/tricalcium phosphate as a scaffold
and implanted the graft in an alveolar cleft, achieving cleft closure and a mean postoperative
defect filling of 51.3% at 3 months after surgery. The same research group used demineralized
bone mineral and calcium sulfate in association with BMSCs to treat alveolar clefts, but did
not achieve similar positive results [47]. They concluded that the latter material was not a
suitable scaffold for MSC-induced bone regeneration.

Bone marrow aspiration, however, is severely painful for donors, often requires general
anesthesia, and may be associated with adverse events [74, 82].

2.4. Blood-derived stem cells

Peripheral blood is a source of MSCs that can be isolated with minimal invasiveness compared
to extraction from bone marrow [83, 84]. According to some authors [85], blood-derived stem
cells have characteristics and bone-regeneration abilities that are similar to those of BMSCs
both in vitro and in vivo and are a promising source for bone regeneration for clinical use; by
contrast, other authors [83] report that blood-derived stem cells have less multipotency than
bone BMSCs.

2.5. Adipose-derived stem cells

Adipose tissue is an alternative source of MSCs that can differentiate into chondrocytes,
osteocytes, or myocytes [17, 54, 86, 87]. An in vivo study demonstrated that adipose-derived
stem cells are capable of bone regeneration and are useful for reconstructing critical-size
defects in rats [55].
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2.6. Secretomes

MSCs enhance wound healing, but the mechanisms are unclear. The use of MSCs for tissue
repair was initially based on the hypothesis that these cells migrate to and differentiate within
injured tissues, becoming specialized cells. It now appears that only a small proportion of
transplanted MSCs actually integrate into and survive in the host tissue. Thus, the predomi‐
nant mechanism by which MSCs participate in tissue repair seems to be related to their
paracrine activity. Indeed, MSCs provide a suitable microenvironment that includes a
multitude of trophic and survival signals, including growth factors and cytokines. Factors
secreted from stem cells into a medium are called secretomes and have attracted much attention
[45] because of their ability to support regenerative processes in the damaged tissue, induce
angiogenesis, protect cells from apoptosis, modulate the immune system, and recruit endog‐
enous stem cells to the grafted site. Compared to stem cells from other sources, BMSCs secrete
distinctively different cytokines and chemokines, including greater amounts of VEGF-alpha,
insulin-like growth factor 1, epidermal growth factor, keratinocyte growth factor, Ang-1,
stromal-derived factor 1, macrophage inflammatory protein-1 alpha and -1 beta, and erythro‐
poietin [45], which are important for normal wound healing.

In vitro, the CM from the culture of BMSCs (MSC-CM) enhances the migration, proliferation,
and expression of osteogenic marker genes such as alkaline phosphatase, osteocalcin, and
Runt-related transcription factor 2 of MSCs, and contains cytokines such as insulin-like growth
factor 1, VEGF, transforming growth factor-β1, and hepatocyte growth factor. The concentra‐
tions of cytokines contained in MSC-CM are relatively low, and the use of MSC-CM does not
induce the severe histologic inflammatory responses observed with the clinical use of re‐
combinant human bone morphogenetic protein 2 [88]. Implantation of MSC-CM in association
with a collagen sponge or agarose produced early bone regeneration in rat calvaria, suggesting
that MSC-CM has potential for cell-free bone regeneration [88, 89].

MSC-CM recruits endogenous stem cells to the graft site and promotes early bone and
periodontal regeneration in rat calvarial bone defects and periodontal tissue [88, 90]. Some
authors [88] noted a stronger effect on bone regeneration and autogenous MSC migration when
MSC-CM, rather than MSCs alone, was used in the graft, demonstrating that MSC-CM induces
bone regeneration via mobilization of endogenous stem cells. The recent use of MSC-CM in
various oral and maxillofacial bone regeneration procedures demonstrated osteogenic
potential [91].

The use of MSC-CM for bone regeneration is a unique concept in which the paracrine factors
of stem cells are used without cell transplantation.

3. Cell isolation

The isolation of cells is often difficult, and the methods of extraction, such as enzymatic
digestion or mechanical disaggregation, require several minutes to a few hours, which can
reduce cell viability. A recent study [92] demonstrated the efficacy of a new medical device
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called Rigeneracons® (CE certified Class I; Human Brain Wave, Turin, Italy) (Figures 1 and 2)
to provide autologous periosteal micrografts (Figure 3) for clinical practice that are enriched
with progenitor cells and are able to regenerate and differentiate.

Figures 1. Rigeneracons® medical device.

Figures 2. Detail of the blades system which disaggregate the periosteal tissue.

Figures 3. 1-2 mm2 of periosteal tissue harvested after flap elevation can be disaggregate to get progenitor cells that
will be seeded on a scaffold to be grafted in the bone defect.

The protocol is very simple. A 1–2-mm periosteal tissue harvested from the flap elevated at
extraction or other surgical site is disaggregated mechanically (2 min at 15 Ncm and 75 round/
min) after adding 1 ml sterile saline. The Rigeneracons® has 100 holes each provided with six
microblades. A filter allows only the cells smaller than 50 μ (eight progenitor cells) to drop
into a tank. The solution is then seeded on a polymeric scaffold (polylactic-co-glycolic acid-
hydroxyapatite (PLGA-HA)) and grafted in the bone site (socket preservation, sinus lifting,
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periodontal defects, etc.) Although in vitro data about the Rigenera protocol are limited, a
recent study demonstrated the efficacy of the Rigenera machine for obtaining stem cells from
dental pulp [67]. These cells were positive for mesenchymal cell-line markers and negative for
hematopoietic and macrophage markers. The percentage of viable cells derived from perios‐
teum samples was high, however, suggesting that the device provides effective extraction.

4. Scaffold

MSCs grafted from a cell suspension require scaffolds to provide support, cohesion, and
stability. Several types of materials are used as scaffolds. Advances in cell therapy have been
accompanied by advances in novel scaffold fabrication techniques, yielding greater control
over the surface topography, internal microstructure, and pore interconnectivity. Porous
scaffolds have been widely explored for cell attachment because of the importance of allowing
adequate room for tissue ingrowth and vascularization (i.e., pore size of 150–500 nm) [93].
Although natural materials retain their bioactivity, synthetic scaffolds present several advan‐
tages, including added flexibility in manufacturing, reproducibility, sterilization, storage
times, and nonimmunogenicity. Solid free-form fabrication, a rapid three-dimensional
printing technology for prototyping, was recently adapted for use in bone regeneration. Other
researchers have developed hydrogels to encapsulate stem cells for tissue engineering, some
with tunable degradation rates, but hydrogels may not provide the strength necessary for bone
repair in load-bearing locations [94–96].

Not all researchers agree about the efficacy of combinations of stem cells and scaffolds, and a
recent study reported that tissue-engineered complexes did not significantly improve bone-
induced regeneration processes. Further studies are needed to elucidate the role of stem cells
and scaffolds in tissue regeneration [97].

5. Epigenetic regulation

Epigenetic factors play a fundamental role in regulating the regenerative processes of MSCs
[98, 99]. In stem cell differentiation processes, some genes may be upregulated and others
repressed. Epigenetic modifications result in significant functional genomic alterations
without changes in the nucleotide sequence [100].

Well-known epigenetic mechanisms include DNA methylation and histone modifications.
Cytosine methylation downregulates gene expression, and the absence of methylation is
essential for gene expression. In bone regeneration, however, methylation is essential. During
MSC differentiation into osteoblasts in vitro, methylation of the osteocalcin promoter is
significantly decreased, leading to the upregulation of osteocalcin [98]. Also, during osteoblast
differentiation, increased methylation of the promoter of LIN28, a gene responsible for the
maintenance of stem cell characteristics, reduces the expression of this gene, which facilitates
osteogenesis [101].
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Gene transcription is also regulated by histone modifications [100]. Histones are positively
charged proteins that strongly bind the light-chain bearing structure of the double strand of
phosphate-deoxyribose DNA. The binding of histone DNA determines the accessibility of
transcription factors [102]. The most studied modifications are acetylation and methylation.
Acetylation reduces DNA binding, allowing for greater gene expression. Conversely, deace‐
tylation leads to a more compact chromatin structure, thus decreasing gene expression [103].
During differentiation, osteoblastic regions of the osteocalcin and osteocalcin promoters
exhibit high levels of acetylation, which allows for greater accessibility of transcription factors.
In addition, the downregulation of histone deacetylase-1 is an important process during
osteogenesis [104]. These examples highlight the complexity of the effects of epigenetic
regulation during bone regeneration.

6. Issues

Despite the initial success regarding the use of MSCs, some challenges remain as follows:

1. MSC removal requires invasive procedures that are associated with morbidity.

2. MSC proliferation and osteogenic differentiation potential decrease with age.

3. Inadequate vascular grafts of MSC carriers lead to cell death.

4. Difficulty accessing the repair site may limit the application of MSCs.

Recent studies revealed that implanted cells do not survive long [105]. One study showed a
significant loss of cells within 24 h, and low numbers of transplanted cells survived at 12 weeks.
Cells that did survive, however, underwent differentiation [106].

A crucial issue for autografts is cell viability; after collection, viability decreases to less than
50%, thereby reducing the regenerative capacities of the autografts. Cell death results from
vessel interruption and subsequently reduced nutrition. Inadequate graft dimensions and
tissue-size reductions to facilitate feeding can also lead to cell death. A promising approach to
address this problem is the use of an instrument that preserves graft viability, such as by
selecting small cells that are less susceptible to cell lysis.

Graft vascularization is a determining factor in cell survival, engraftment, and bone regener‐
ation. In 1997, circulating EPCs were identified [107, 108]. EPCs participate in neovasculari‐
zation processes [109], angiogenesis, vascular repair, restoration of blood flow after ischemia,
distraction osteogenesis [110, 111], healing of fractures [111], and bone regeneration [112], and
have an osteogenic potential. They are located mainly in the bone marrow and are mobilized
as a result of biologic signals. The in vitro cultivation of mononuclear cell fractions under
favorable conditions produces two EPC subtypes: early- and late-outgrowth endothelial cells
[113]. Early-outgrowth endothelial cells survive less than 7 days in vitro, are characterized by
a low rate of duplication, and induce transient angiogenesis principally for paracrine effects;
late-outgrowth cells can expand to 100 cell population doublings, take root at the site of
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engraftment, and can differentiate into osteoblasts [114]. A 2009 study demonstrated the
successful application of blood-derived EPCs for healing bone defects [115].

7. Safety of transplanted MSCs

Clinical trials to evaluate the safety of MSCs for the treatment of graft-versus-host disease,
ischemic heart disease, spinal cord injury, and systemic lupus erythematosus have not revealed
any significant adverse effects [116–119]. While pluripotent cells have been obtained from
adult somatic tissues by reprogramming methods [120], these cells can differentiate into
different tissues and have wrongly been considered a source of MSCs for tissue regeneration.
Indeed, they are known to cause teratoma formation and significant efforts to address the
safety concerns are required before their application in patients [120]. By contrast, MSCs
obtained without genetic reprogramming have a high capability to differentiate into many
tissues without developing into tumor cells.

Studies of the role of MSCs in tumorigenesis have identified the ability of MSCs to interact
with tumor cells and to support angiogenesis by providing a matrix to support cancer cells
[121, 122]. MSCs may thus facilitate the growth of existing tumors [123, 124]. Transdifferen‐
tiation of MSCs has been observed in vitro, but this phenomenon could be due to contamina‐
tion by tumor cells [125, 126].
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