45,250 research outputs found

    Fluctuating surface-current formulation of radiative heat transfer: theory and applications

    Full text link
    We describe a novel fluctuating-surface current formulation of radiative heat transfer between bodies of arbitrary shape that exploits efficient and sophisticated techniques from the surface-integral-equation formulation of classical electromagnetic scattering. Unlike previous approaches to non-equilibrium fluctuations that involve scattering matrices---relating "incoming" and "outgoing" waves from each body---our approach is formulated in terms of "unknown" surface currents, laying at the surfaces of the bodies, that need not satisfy any wave equation. We show that our formulation can be applied as a spectral method to obtain fast-converging semi-analytical formulas in high-symmetry geometries using specialized spectral bases that conform to the surfaces of the bodies (e.g. Fourier series for planar bodies or spherical harmonics for spherical bodies), and can also be employed as a numerical method by exploiting the generality of surface meshes/grids to obtain results in more complicated geometries (e.g. interleaved bodies as well as bodies with sharp corners). In particular, our formalism allows direct application of the boundary-element method, a robust and powerful numerical implementation of the surface-integral formulation of classical electromagnetism, which we use to obtain results in new geometries, including the heat transfer between finite slabs, cylinders, and cones

    Digital computer simulation of inductor-energy-storage dc-to-dc converters with closed-loop regulators

    Get PDF
    The simulation of converter-controller combinations by means of a flexible digital computer program which produces output to a graphic display is discussed. The procedure is an alternative to mathematical analysis of converter systems. The types of computer programming involved in the simulation are described. Schematic diagrams, state equations, and output equations are displayed for four basic forms of inductor-energy-storage dc to dc converters. Mathematical models are developed to show the relationship of the parameters

    On the Computation of Power in Volume Integral Equation Formulations

    Full text link
    We present simple and stable formulas for computing power (including absorbed/radiated, scattered and extinction power) in current-based volume integral equation formulations. The proposed formulas are given in terms of vector-matrix-vector products of quantities found solely in the associated linear system. In addition to their efficiency, the derived expressions can guarantee the positivity of the computed power. We also discuss the application of Poynting's theorem for the case of sources immersed in dissipative materials. The formulas are validated against results obtained both with analytical and numerical methods for scattering and radiation benchmark cases

    Macroscopic limit of a kinetic model describing the switch in T cell migration modes via binary interactions

    Get PDF
    Experimental results on the immune response to cancer indicate that activation of cytotoxic T lymphocytes (CTLs) through interactions with dendritic cells (DCs) can trigger a change in CTL migration patterns. In particular, while CTLs in the pre-activation state move in a non-local search pattern, the search pattern of activated CTLs is more localised. In this paper, we develop a kinetic model for such a switch in CTL migration modes. The model is formulated as a coupled system of balance equations for the one-particle distribution functions of CTLs in the pre-activation state, activated CTLs and DCs. CTL activation is modelled via binary interactions between CTLs in the pre-activation state and DCs. Moreover, cell motion is represented as a velocity-jump process, with the running time of CTLs in the pre-activation state following a long-tailed distribution, which is consistent with a Lévy walk, and the running time of activated CTLs following a Poisson distribution, which corresponds to Brownian motion. We formally show that the macroscopic limit of the model comprises a coupled system of balance equations for the cell densities, whereby activated CTL movement is described via a classical diffusion term, whilst a fractional diffusion term describes the movement of CTLs in the pre-activation state. The modelling approach presented here and its possible generalisations are expected to find applications in the study of the immune response to cancer and in other biological contexts in which switch from non-local to localised migration patterns occurs

    Casimir repulsion between metallic objects in vacuum

    Full text link
    We give an example of a geometry in which two metallic objects in vacuum experience a repulsive Casimir force. The geometry consists of an elongated metal particle centered above a metal plate with a hole. We prove that this geometry has a repulsive regime using a symmetry argument and confirm it with numerical calculations for both perfect and realistic metals. The system does not support stable levitation, as the particle is unstable to displacements away from the symmetry axis.Comment: 4 pages, 4 figures; added references, replaced Fig.

    On the Perturbations of Viscous Rotating Newtonian Fluids

    Get PDF
    The perturbations of weakly-viscous, barotropic, non-self-gravitating, Newtonian rotating fluids are analyzed via a single partial differential equation. The results are then used to find an expression for the viscosity-induced normal-mode complex eigenfrequency shift, with respect to the case of adiabatic perturbations. However, the effects of viscosity are assumed to have been incorporated in the unperturbed (equilibrium) model. This paper is an extension of the normal-mode formalism developed by Ipser & Lindblom for adiabatic pulsations of purely-rotating perfect fluids. The formulas derived are readily applicable to the perturbations of thin and thick accretion disks. We provide explicit expressions for thin disks, employing results from previous relativistic analyses of adiabatic normal modes of oscillation. In this case, we find that viscosity causes the fundamental p- and g- modes to grow while the fundamental c-mode could have either sign of the damping rate.Comment: Accepted for publication by The Astrophysical Journal. 11 pages, no figure

    A digital computer simulation and study of a direct-energy-transfer power-conditioning system

    Get PDF
    A digital computer simulation technique, which can be used to study such composite power-conditioning systems, was applied to a spacecraft direct-energy-transfer power-processing system. The results obtained duplicate actual system performance with considerable accuracy. The validity of the approach and its usefulness in studying various aspects of system performance such as steady-state characteristics and transient responses to severely varying operating conditions are demonstrated experimentally

    High-energy gamma-ray observations of the accreting black hole V404 Cygni during its June 2015 outburst

    Get PDF
    We report on Fermi/Large Area Telescope observations of the accreting black hole low-mass X-ray binary V404 Cygni during its outburst in June-July 2015. Detailed analyses reveal a possible excess of γ\gamma-ray emission on 26 June 2015, with a very soft spectrum above 100100 MeV, at a position consistent with the direction of V404 Cyg (within the 95%95\% confidence region and a chance probability of 4×1044 \times 10^{-4}). This emission cannot be associated with any previously-known Fermi source. Its temporal coincidence with the brightest radio and hard X-ray flare in the lightcurve of V404 Cyg, at the end of the main active phase of its outburst, strengthens the association with V404 Cyg. If the γ\gamma-ray emission is associated with V404 Cyg, the simultaneous detection of 511511\,keV annihilation emission by INTEGRAL requires that the high-energy γ\gamma rays originate away from the corona, possibly in a Blandford-Znajek jet. The data give support to models involving a magnetically-arrested disk where a bright γ\gamma-ray jet can re-form after the occurrence of a major transient ejection seen in the radio.Comment: 5 pages, 3 figures, accepted for publication in MNRA
    corecore