50,844 research outputs found
The Hetu'u Global Network: Measuring the Distance to the Sun Using the June 5th/6th Transit of Venus
In the spirit of historic astronomical endeavors, we invited school groups
across the globe to collaborate in a solar distance measurement using the rare
June 5/6th transit of Venus. In total, we recruited 19 school groups spread
over 6 continents and 10 countries to participate in our Hetu'u Global Network.
Applying the methods of French astronomer Joseph-Nicolas Delisle, we used
individual second and third Venus-Sun contact times to calculate the distance
to the Sun. Ten of the sites in our network had amiable weather; 8 of which
measured second contact and 5 of which measured third contact leading to
consistent solar distance measurements of 152+/-30 million km and 163+/-30
million km respectively. The distance to the Sun at the time of the transit was
152.25 million km; therefore, our measurements are also consistent within
1sigma of the known value. The goal of our international school group network
was to inspire the next generation of scientists using the excitement and
accessibility of a rare astronomical event. In the process, we connected
hundreds of participating students representing a diverse, multi-cultural group
with differing political, economic, and racial backgrounds.Comment: 19 pages; 7 Figures; 1 Table; Accepted for publication in Astronomy
Education Review (AER) For more information see
http://www.das.uchile.cl/~drodrigu/easter/index_en.htm
Material Dependence of the Wire-Particle Casimir Interaction
We study the Casimir interaction between a metallic cylindrical wire and a
metallic spherical particle by employing the scattering formalism. At large
separations, we derive the asymptotic form of the interaction. In addition, we
find the interaction between a metallic wire and an isotropic atom, both in the
non-retarded and retarded limits. We identify the conditions under which the
asymptotic Casimir interaction does not depend on the material properties of
the metallic wire and the particle. Moreover, we compute the exact Casimir
interaction between the particle and the wire numerically. We show that there
is a complete agreement between the numerics and the asymptotic energies at
large separations. For short separations, our numerical results show good
agreement with the proximity force approximation
Altitude calibration of an F100, S/N P680063, turbofan engine
An airflow and thrust calibration of an F100 engine was conducted in coordination with a flight test program to study airframe-propulsion system integration characteristics of turbofan-powered high-performance aircraft. The tests were conducted with and without augmentation for a variety of simulated flight conditions with emphasis on the transonic regime. Test results for all conditions are presented in terms of corrected airflow and corrected gross thrust as functions of corrected fan speed for nonaugmented power and an augmented thrust ratio as a function of fuel-air ratio for augmented power. Comparisons of measured and predicted data are presented along with the results of an uncertainty analysis for both corrected airflow and gross thrust
Neutralization of chemokines RANTES and MIG increases virus antigen expression and spinal cord pathology during Theiler's virus infection.
The role of chemokines during some viral infections is unpredictable because the inflammatory response regulated by these molecules can have two, contrasting effects-viral immunity and immunopathologic injury to host tissues. Using Theiler's virus infection of SJL mice as a model of this type of disease, we have investigated the roles of two chemokines-regulated on activation, normal T cell-expressed and secreted (RANTES) chemokine and monokine induced by IFN-gamma (MIG)-by treating mice with antisera that block lymphocyte migration. Control, infected mice showed virus persistence, mild inflammation and a small degree of demyelination in the white matter of the spinal cord at 6 weeks post-infection. Treatment of mice with RANTES antiserum starting at 2 weeks post-infection increased both viral antigen expression and the severity of inflammatory demyelination at 6 weeks post-infection. MIG antiserum increased the spread of virus and the proportion of spinal cord white matter with demyelination. Overall, viral antigen levels correlated strongly with the extent of pathology. At the RNA level, high virus expression was associated with low IL-2 and high IL-10 levels, and RANTES antiserum decreased the IL-2/IL-10 ratio. Our results suggest that RANTES and MIG participate in an immune response that attempts to restrict viral expression while limiting immunopathology and that anti-chemokine treatment poses the risk of exacerbating both conditions in the long term
Asteroseismology of the Beta Cephei star Nu Eridani -- IV. The 2003-4 multisite photometric campaign and the combined 2002-4 data
The second multisite photometric campaign devoted to Nu Eri is reported. For
Nu Eri, analysis of the new data adds four independent frequencies to the nine
derived previously from the 2002-3 data, three in the range from 7.20 to 7.93
c/d, and a low one, equal to 0.614 c/d. Combining the new and the old data
results in two further independent frequencies, equal to 6.7322 and 6.2236 c/d.
Altogether, the oscillation spectrum is shown to consist of 12 high frequencies
and two low ones. The latter have u amplitudes about twice as large as the v
and y amplitudes, a signature of high radial-order g modes. Thus, the
suggestion that Nu Eri is both a Beta Cephei and an SPB star, put forward on
the basis of the first campaign's data, is confirmed.
Nine of the 12 high frequencies form three triplets, of which two are new.
The triplets represent rotationally split l=1 modes, although in case of the
smallest-amplitude one this may be questioned. Mean separations and asymmetries
of the triplets are derived with accuracy sufficient for meaningful comparison
with models.
The first comparison star, Mu Eri, is shown to be an SPB variable with an
oscillation spectrum consisting of six frequencies, three of which are
equidistant in period. The star is also found to be an eclipsing variable. The
eclipse is a transit, probably total, the secondary is fainter than the primary
by several magnitudes, and the system is widely detached.
The second comparison star, Xi Eri, is confirmed to be a Delta Scuti
variable. To the frequency of 10.8742 c/d seen already in the first campaign's
data, another one, equal to 17.2524 c/d, is added.Comment: 13 pages, 8 figures, MNRAS, in pres
Double Beta Decay, Nuclear Structure and Physics beyond the Standard Model
Neutrinoless Double Beta Decay () is presently the only known
experiment to distinguisch between Dirac neutrinos, different from their
antiparticles, and Majorana neutrinos, identical with their antiparticles. In
addition allows to determine the absolute scale of the
neutrino masses. This is not possible with neutrino oscillations. To determine
the neutrino masses one must assume, that the light Majorana neutrino exchange
is the leading mechanism for and that the matrix element of
this transition can ba calculated reliably. The experimental
transition amplitude in this mechanism is a product of the light left handed
effective Majorana neutrino mass and of this transition matrix element. The
different methods, Quasi-particle Random Phase Approximation (QRPA), Shell
Model (SM), Projected Hartree-Fock-Bogoliubov (PHFB) and Interacting Boson
Model (IBM2) used in the literature and the reliability of the matrix elements
in these approaches are reviewed. In the second part it is investigated how one
can determine the leading mechanism or mechanisms from the data of the
decay in different nuclei. Explicite expressions are given for
the transition matrix elements. is shown, that possible interference terms
allow to test CP (Charge and Parity conjugation) violation.Comment: Contribution to the EPS conference in Eilath: "Nuclear Physics in
Astrophysics 5." April 3rd to 8th. 201
From weak to strong coupling of localized surface plasmons to guided modes in a luminescent slab
We investigate a periodic array of aluminum nanoantennas embedded in a
light-emitting slab waveguide. By varying the waveguide thickness we
demonstrate the transition from weak to strong coupling between localized
surface plasmons in the nanoantennas and refractive index guided modes in the
waveguide. We experimentally observe a non-trivial relationship between
extinction and emission dispersion diagrams across the weak to strong coupling
transition. These results have implications for a broad class of photonic
structures where sources are embedded within coupled resonators. For
nanoantenna arrays, strong vs. weak coupling leads to drastic modifications of
radiation patterns without modifying the nanoantennas themselves, thereby
representing an unprecedented design strategy for nanoscale light sources
- …