5,456 research outputs found

    Isolation and identification of Homolactic bacteria from Solanum melongena L. with antibacterial activity that improve vegetable fermentation

    Get PDF
    The aim of this work was the isolation and identification of lactic acid bacteria with homolactic metabolism from eggplant; the lactic acid production and antibacterial activity were adopted as selected criteria to be included in the elaboration of fermented carrots as starter cultures. Between 50 isolated colonies, 14 were identified as lactic acid bacteria with homolactic metabolism, but only lactic acid bacteria identified phenotypic and genotypic as Lactobacillus plantarum were effective to produce cellular death and inhibit biofilm formation of five pathogenic bacteria. L. plantarum SB1 and SB2 were included in carrot fermentation on the basis of the best lactic acid production, antibacterial activity as well as the lowest C4 compounds and H2S formation. The scalded process was not enough effective to reduce Gram negative bacteria, but the addition of the selected bacteria isolated from eggplant to fermentation was effective to reduce all Gram negative population at 7 day. The big finding of this work was the isolation and identification of L. plantarum SB1 and SB2 from eggplant that could adapted in an different ecological niche and their addition to fermented carrots increase stability and microbiological safety of final product, preventing infectious diseases, with optimal sensorial attributed.Fil: Rodriguez Vaquero, Maria Jose. Universidad Nacional de Tucumán. Facultad de Bioquímica, Química y Farmacia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tucumán; ArgentinaFil: Perato, Silvia Marisa. Universidad Nacional de Tucumán. Facultad de Bioquímica, Química y Farmacia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tucumán; ArgentinaFil: Rivero, Luciana del Valle. Universidad Nacional de Tucumán. Facultad de Bioquímica, Química y Farmacia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tucumán; ArgentinaFil: Saguir, Fabiana M.. Universidad Nacional de Tucumán. Facultad de Bioquímica, Química y Farmacia; Argentin

    Smartphone sensors for monitoring cancer-related Quality of Life: App design, EORTC QLQ-C30 mapping and feasibility study in healthy subjects

    Full text link
    [EN] Quality of life (QoL) indicators are now being adopted as clinical outcomes in clinical trials on cancer treatments. Technology-free daily monitoring of patients is complicated, time-consuming and expensive due to the need for vast amounts of resources and personnel. The alternative method of using the patients¿ own phones could reduce the burden of continuous monitoring of cancer patients in clinical trials. This paper proposes monitoring the patients¿ QoL by gathering data from their own phones. We considered that the continuous multiparametric acquisition of movement, location, phone calls, conversations and data use could be employed to simultaneously monitor their physical, psychological, social and environmental aspects. An open access phone app was developed (Human Dynamics Reporting Service (HDRS)) to implement this approach. We here propose a novel mapping between the standardized QoL items for these patients, the European Organization for the Research and Treatment of Cancer Quality of Life Questionnaire (EORTC QLQ-C30) and define HDRS monitoring indicators. A pilot study with university volunteers verified the plausibility of detecting human activity indicators directly related to QoL.Funding for this study was provided by the authors' various departments, and partially by the CrowdHealth Project (Collective Wisdom Driving Public Health Policies (727560)) and the MTS4up project (DPI2016-80054-R).Asensio Cuesta, S.; Sánchez-García, Á.; Conejero, JA.; Sáez Silvestre, C.; Rivero-Rodriguez, A.; Garcia-Gomez, JM. (2019). Smartphone sensors for monitoring cancer-related Quality of Life: App design, EORTC QLQ-C30 mapping and feasibility study in healthy subjects. International Journal of Environmental research and Public Health. 16(3):1-18. https://doi.org/10.3390/ijerph16030461S118163Number of Smartphone Users Worldwide from 2014 to 2020 (in Billions)https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/Mirkovic, J., Kaufman, D. R., & Ruland, C. M. (2014). Supporting Cancer Patients in Illness Management: Usability Evaluation of a Mobile App. JMIR mHealth and uHealth, 2(3), e33. doi:10.2196/mhealth.3359Xing Su, Hanghang Tong, & Ping Ji. (2014). Activity recognition with smartphone sensors. Tsinghua Science and Technology, 19(3), 235-249. doi:10.1109/tst.2014.6838194Schmitz Weiss, A. (2013). Exploring News Apps and Location-Based Services on the Smartphone. Journalism & Mass Communication Quarterly, 90(3), 435-456. doi:10.1177/1077699013493788Higgins, J. P. (2016). Smartphone Applications for Patients’ Health and Fitness. The American Journal of Medicine, 129(1), 11-19. doi:10.1016/j.amjmed.2015.05.038Rivenson, Y., Ceylan Koydemir, H., Wang, H., Wei, Z., Ren, Z., Günaydın, H., … Ozcan, A. (2018). Deep Learning Enhanced Mobile-Phone Microscopy. ACS Photonics, 5(6), 2354-2364. doi:10.1021/acsphotonics.8b00146Priye, A., Ball, C. S., & Meagher, R. J. (2018). Colorimetric-Luminance Readout for Quantitative Analysis of Fluorescence Signals with a Smartphone CMOS Sensor. Analytical Chemistry, 90(21), 12385-12389. doi:10.1021/acs.analchem.8b03521Measuring Quality of Life for Cancer Patients: Where Are We Today and Where Are We Headed Tomorrow?http://blog.mdsol.com/measuring-quality-of-life-for-cancer-patients-where-are-we-today-and-where-are-we-headed-tomorrow/Zulueta, J., Piscitello, A., Rasic, M., Easter, R., Babu, P., Langenecker, S. A., … Leow, A. (2018). Predicting Mood Disturbance Severity with Mobile Phone Keystroke Metadata: A BiAffect Digital Phenotyping Study. Journal of Medical Internet Research, 20(7), e241. doi:10.2196/jmir.9775Caruso, R., GiuliaNanni, M., Riba, M. B., Sabato, S., & Grassi, L. (2017). Depressive Spectrum Disorders in Cancer: Diagnostic Issues and Intervention. A Critical Review. Current Psychiatry Reports, 19(6). doi:10.1007/s11920-017-0785-7THE WHOQOL GROUP. (1998). Development of the World Health Organization WHOQOL-BREF Quality of Life Assessment. Psychological Medicine, 28(3), 551-558. doi:10.1017/s0033291798006667Basic Issues Concerning Health-Related Quality of Life. (2017). Central European Journal of Urology, 70(2). doi:10.5173/ceju.2017.923Sloan, J. A. (2011). Metrics to Assess Quality of Life After Management of Early-Stage Lung Cancer. The Cancer Journal, 17(1), 63-67. doi:10.1097/ppo.0b013e31820e15dcBordoni, R., Ciardiello, F., von Pawel, J., Cortinovis, D., Karagiannis, T., Ballinger, M., … Rittmeyer, A. (2018). Patient-Reported Outcomes in OAK: A Phase III Study of Atezolizumab Versus Docetaxel in Advanced Non–Small-cell Lung Cancer. Clinical Lung Cancer, 19(5), 441-449.e4. doi:10.1016/j.cllc.2018.05.011Hartkopf, A. D., Graf, J., Simoes, E., Keilmann, L., Sickenberger, N., Gass, P., … Wallwiener, M. (2017). Electronic-Based Patient-Reported Outcomes: Willingness, Needs, and Barriers in Adjuvant and Metastatic Breast Cancer Patients. JMIR Cancer, 3(2), e11. doi:10.2196/cancer.6996Wallwiener, M., Matthies, L., Simoes, E., Keilmann, L., Hartkopf, A. D., Sokolov, A. N., … Brucker, S. Y. (2017). Reliability of an e-PRO Tool of EORTC QLQ-C30 for Measurement of Health-Related Quality of Life in Patients With Breast Cancer: Prospective Randomized Trial. Journal of Medical Internet Research, 19(9), e322. doi:10.2196/jmir.8210Gresham, G., Hendifar, A. E., Spiegel, B., Neeman, E., Tuli, R., Rimel, B. J., … Shinde, A. M. (2018). Wearable activity monitors to assess performance status and predict clinical outcomes in advanced cancer patients. npj Digital Medicine, 1(1). doi:10.1038/s41746-018-0032-6BOHANNON, R. W. (1997). Comfortable and maximum walking speed of adults aged 20—79 years: reference values and determinants. Age and Ageing, 26(1), 15-19. doi:10.1093/ageing/26.1.15Pérez-García, V. M., Fitzpatrick, S., Pérez-Romasanta, L. A., Pesic, M., Schucht, P., Arana, E., & Sánchez-Gómez, P. (2016). Applied mathematics and nonlinear sciences in the war on cancer. Applied Mathematics and Nonlinear Sciences, 1(2), 423-436. doi:10.21042/amns.2016.2.00036Shin, W., Song, S., Jung, S.-Y., Lee, E., Kim, Z., Moon, H.-G., … Lee, J. E. (2017). The association between physical activity and health-related quality of life among breast cancer survivors. Health and Quality of Life Outcomes, 15(1). doi:10.1186/s12955-017-0706-9Wearable Fitness Monitors Useful in Cancer Treatment, Study Findswww.sciencedaily.com/releases/2018/05/180501130856.htmBade, B. C., Brooks, M. C., Nietert, S. B., Ulmer, A., Thomas, D. D., Nietert, P. J., … Silvestri, G. A. (2016). Assessing the Correlation Between Physical Activity and Quality of Life in Advanced Lung Cancer. Integrative Cancer Therapies, 17(1), 73-79. doi:10.1177/1534735416684016Fortner, B. V., Stepanski, E. J., Wang, S. C., Kasprowicz, S., & Durrence, H. H. (2002). Sleep and Quality of Life in Breast Cancer Patients. Journal of Pain and Symptom Management, 24(5), 471-480. doi:10.1016/s0885-3924(02)00500-6Mishra, S. I., Scherer, R. W., Snyder, C., Geigle, P., & Gotay, C. (2014). Are Exercise Programs Effective for Improving Health-Related Quality of Life Among Cancer Survivors? A Systematic Review and Meta-Analysis. Oncology Nursing Forum, 41(6), E326-E342. doi:10.1188/14.onf.e326-e342Ratcliff, C. G., Lam, C. Y., Arun, B., Valero, V., & Cohen, L. (2014). Ecological momentary assessment of sleep, symptoms, and mood during chemotherapy for breast cancer. Psycho-Oncology, 23(11), 1220-1228. doi:10.1002/pon.3525Cox, S. M., Lane, A., & Volchenboum, S. L. (2018). Use of Wearable, Mobile, and Sensor Technology in Cancer Clinical Trials. JCO Clinical Cancer Informatics, (2), 1-11. doi:10.1200/cci.17.00147Brown, W., Yen, P.-Y., Rojas, M., & Schnall, R. (2013). Assessment of the Health IT Usability Evaluation Model (Health-ITUEM) for evaluating mobile health (mHealth) technology. Journal of Biomedical Informatics, 46(6), 1080-1087. doi:10.1016/j.jbi.2013.08.001Darlow, S., & Wen, K.-Y. (2016). Development testing of mobile health interventions for cancer patient self-management: A review. Health Informatics Journal, 22(3), 633-650. doi:10.1177/1460458215577994Martin Sanchez, F., Gray, K., Bellazzi, R., & Lopez-Campos, G. (2014). Exposome informatics: considerations for the design of future biomedical research information systems. Journal of the American Medical Informatics Association, 21(3), 386-390. doi:10.1136/amiajnl-2013-001772Kim, H. H., Lee, S. Y., Baik, S. Y., & Kim, J. H. (2015). MELLO: Medical lifelog ontology for data terms from self-tracking and lifelog devices. International Journal of Medical Informatics, 84(12), 1099-1110. doi:10.1016/j.ijmedinf.2015.08.005Kessel, K. A., Vogel, M. M., Alles, A., Dobiasch, S., Fischer, H., & Combs, S. E. (2018). Mobile App Delivery of the EORTC QLQ-C30 Questionnaire to Assess Health-Related Quality of Life in Oncological Patients: Usability Study. JMIR mHealth and uHealth, 6(2), e45. doi:10.2196/mhealth.9486Elsbernd, A., Hjerming, M., Visler, C., Hjalgrim, L. L., Niemann, C. U., Boisen, K., & Pappot, H. (2018). Cocreated Smartphone App to Improve the Quality of Life of Adolescents and Young Adults with Cancer (Kræftværket): Protocol for a Quantitative and Qualitative Evaluation. JMIR Research Protocols, 7(5), e10098. doi:10.2196/1009

    Observation of accelerated beam ion population during edge localized modes in the ASDEX Upgrade tokamak

    Get PDF
    The interaction between fast-ions and edge localized modes (ELMs) is investigated by means of fast-ion loss detector measurements. Fast-ion losses are increased during ELMs exhibiting a 3D filamentary-like behaviour. An accelerated beam ion population has been observed during ELMs in a tokamak for the first time. Tomographic inversion of the measured fast-ion losses reveal multiple velocity-space structures. Attending to the experimental observations, an acceleration mechanism is proposed based on a resonant interaction between the beam ions and parallel electric fields emerging during the ELM crash. The key experimental observations can be qualitatively reproduced by full-orbit following simulations of fast-ions in the presence of the ELM magnetic and electric perturbation fields. Our findings may shed light on the possible contribution of fast-ions to the ELM stability and the transient heat loads on plasma facing components.EUROfusion Consortium 633053Spanish Ministry of Economy and Competitiveness (Grant No. FIS2015-69362-P)H2020 Marie Sklodowska Curie programme (Grant No. 708257

    Root high-affinity K+ and Cs+ uptake and plant fertility in tomato plants are dependent on the activity of the high-affinity K+ transporter SlHAK5

    Get PDF
    Root K+ acquisition is a key process for plant growth and development, extensively studied in the model plant Arabidopsis thaliana. Because important differences may exist among species, translational research supported by specific studies is needed in crops such as tomato. Here we present a reverse genetics study to demonstrate the role of the SlHAK5 K+ transporter in tomato K+ nutrition, Cs+ accumulation and its fertility. slhak5 KO lines, generated by CRISPR-Cas edition, were characterized in growth experiments, Rb+ and Cs+ uptake tests and root cells K+-induced plasma membrane depolarizations. Pollen viability and its K+ accumulation capacity were estimated by using the K+-sensitive dye Ion Potassium Green 4. SlHAK5 is the major system for high-affinity root K+ uptake required for plant growth at low K+, even in the presence of salinity. It also constitutes a pathway for Cs+ entry in tomato plants with a strong impact on fruit Cs+ accumulation. SlHAK5 also contributes to pollen K+ uptake and viability and its absence produces almost seedless fruits. Knowledge gained into SlHAK5 can serve as a model for other crops with fleshy fruits and it can help to generate tools to develop low Cs+ or seedless fruits crops.Fil: Nieves Cordones, Manuel. Consejo Superior de Investigaciones Científicas. Centro de Edafología y Biología Aplicada del Segura; EspañaFil: Lara, Alberto. Consejo Superior de Investigaciones Científicas. Centro de Edafología y Biología Aplicada del Segura; EspañaFil: Silva, Martha. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); ArgentinaFil: Amo, Jesús. Consejo Superior de Investigaciones Científicas. Centro de Edafología y Biología Aplicada del Segura; EspañaFil: Rodriguez Sepulveda, Pascual. No especifíca;Fil: Rivero, Rosa M.. Consejo Superior de Investigaciones Científicas. Centro de Edafología y Biología Aplicada del Segura; EspañaFil: Martínez, Vicente. Consejo Superior de Investigaciones Científicas. Centro de Edafología y Biología Aplicada del Segura; EspañaFil: Botella, María Ángeles. Universidad de Miguel Hernández; EspañaFil: Rubio, Francisco. Consejo Superior de Investigaciones Científicas. Centro de Edafología y Biología Aplicada del Segura; Españ

    Beam modelling and hardware design of an imaging heavy ion beam probe for ASDEX Upgrade

    Get PDF
    The imaging heavy ion beam probe (i-HIBP) developed at the ASDEX Upgrade tokamak is a new diagnostic concept for investigations at the edge of high temperature plasmas. By means of a heavy alkali beam injector, a neutral primary beam of an energy of 70 keV is injected into the fusion plasma, where it is ionized generating a fan of secondary beams. These are deflected by the magnetic field of the tokamak and intersect a scintillator plate in the limiter shadow of the tokamak. The light pattern on the scintillator detected with a high speed camera contains radial information on the density, electrostatic potential and the magnetic field in the edge region of the plasma. For the design of the i-HIBP, a detailed beam model including the 3D tokamak magnetic field and beam attenuation effects for cesium and rubidium atoms is developed in order to find the optimum injection scheme within the limited space of the tokamak environment for maximum signal intensities. Based on the optimized injection, the arrangement of the injector outside the vacuum-vessel and the detailed design of the optical in-vessel system is determined.Helmholtz Association grant no. VH-NG-135
    corecore