9 research outputs found

    A manifesto for future generation cloud computing: research directions for the next decade

    Get PDF
    The Cloud computing paradigm has revolutionised the computer science horizon during the past decade and has enabled the emergence of computing as the fifth utility. It has captured significant attention of academia, industries, and government bodies. Now, it has emerged as the backbone of modern economy by offering subscription-based services anytime, anywhere following a pay-as-you-go model. This has instigated (1) shorter establishment times for start-ups, (2) creation of scalable global enterprise applications, (3) better cost-to-value associativity for scientific and high performance computing applications, and (4) different invocation/execution models for pervasive and ubiquitous applications. The recent technological developments and paradigms such as serverless computing, software-defined networking, Internet of Things, and processing at network edge are creating new opportunities for Cloud computing. However, they are also posing several new challenges and creating the need for new approaches and research strategies, as well as the re-evaluation of the models that were developed to address issues such as scalability, elasticity, reliability, security, sustainability, and application models. The proposed manifesto addresses them by identifying the major open challenges in Cloud computing, emerging trends, and impact areas. It then offers research directions for the next decade, thus helping in the realisation of Future Generation Cloud Computing

    A manifesto for future generation cloud computing: Research directions for the next decade

    Get PDF
    © 2018 Association for Computing Machinery. The Cloud computing paradigm has revolutionised the computer science horizon during the past decade and has enabled the emergence of computing as the fifth utility. It has captured significant attention of academia, industries, and government bodies. Now, it has emerged as the backbone of modern economy by offering subscription-based services anytime, anywhere following a pay-as-you-go model. This has instigated (1) shorter establishment times for start-ups, (2) creation of scalable global enterprise applications, (3) better cost-to-value associativity for scientific and high-performance computing applications, and (4) different invocation/execution models for pervasive and ubiquitous applications. The recent technological developments and paradigms such as serverless computing, software-defined networking, Internet of Things, and processing at network edge are creating new opportunities for Cloud computing. However, they are also posing several new challenges and creating the need for new approaches and research strategies, as well as the re-evaluation of the models that were developed to address issues such as scalability, elasticity, reliability, security, sustainability, and application models. The proposed manifesto addresses them by identifying the major open challenges in Cloud computing, emerging trends, and impact areas. It then offers research directions for the next decade, thus helping in the realisation of Future Generation Cloud Computing

    Self-adaptive Container Deployment in the Fog: A Survey

    No full text
    The fast increasing presence of Internet-of-Things and fog computing resources exposes new challenges due to heterogeneity and non-negligible network delays among resources as well as the dynamism of operating conditions. Such a variable computing environment leads the applications to adopt an elastic and decentralized execution. To simplify the application deployment and run-time management, containers are widely used nowadays. The deployment of a container-based application over a geo-distributed computing infrastructure is a key task that has a significant impact on the application non-functional requirements (e.g., performance, security, cost). In this survey, we first develop a taxonomy based on the goals, the scope, the actions, and the methodologies considered to adapt at run-time the application deployment. Then, we use it to classify some of the existing research results. Finally, we identify some open challenges that arise for the application deployment in the fog. In literature, we can find many different approaches for adapting the containers deployment, each tailored for optimizing a specific objective, such as the application response time, its deployment cost, or the efficient utilization of the available computing resources. However, although several solutions for deploying containers exist, those explicitly considering the distinctive features of fog computing are at the early stages: indeed, existing solutions scale containers without considering their placement, or do not consider the heterogeneity, the geographic distribution, and mobility of fog resources

    A Comparative Study of Metaheuristics based Task Scheduling in Distributed Environment

    No full text
    corecore