2,548 research outputs found

    Confinement of Spin and Charge in High-Temperature Superconductors

    Full text link
    By exploiting the internal gauge-invariance intrinsic to a spin-charge separated electron, we show that such degrees of freedom must be confined in two-dimensional superconductors experiencing strong inter-electron repulsion. We also demonstrate that incipient confinement in the normal state can prevent chiral spin-fluctuations from destroying the cross-over between strange and psuedo-gap regimes in under-doped high-temperature superconductors. Last, we suggest that the negative Hall anomaly observed in these materials is connected with this confinement effect.Comment: 12 pages, 1 postscript figure, to appear in PRB (RC), May 199

    Defective Vortex Lattices in Layered Superconductors with Point Pins at the Extreme Type-II Limit

    Full text link
    The mixed phase of layered superconductors with no magnetic screening is studied through a partial duality analysis of the corresponding frustrated XY model in the presence of weak random point pins. Isolated layers exhibit a defective vortex lattice at low temperature that is phase coherent. Sufficiently weak Josephson coupling between adjacent layers results in an entangled vortex solid that exhibits weak superconductivity across layers. The corresponding vortex liquid state shows an inverted specific heat anomaly that we propose accounts for that seen in YBCO. A three-dimensional vortex lattice with dislocations occurs at stronger coupling. This crossover sheds light on the apparent discrepancy concerning the observation of a vortex-glass phase in recent Monte Carlo simulations of the same XY model.Comment: 4 pages, 1 figure. To appear in PRB, rapid communicatio

    Theory for Decoupling in High-T_c Superconductors from an Analysis of the Layered XY Model with Frustration

    Full text link
    The nature of decoupling in the mixed phase of extremely type-II layered superconductors is studied theoretically through a duality transformation of the layered XY model with frustration. In the limit of weak coupling, we generally find that the Josephson effect is absent if and only if the phase correlations within isolated layers are short range. In the case specific to uniform frustration, we notably identify a decoupled pancake vortex liquid phase that is bounded by first-order and second-order decoupling lines in the magnetic field vs. temperature plane. These transitions potentially account for the flux-lattice melting and for the flux-lattice depinning that is observed in clean high-temperature superconductors.Comment: 11 pgs. of Plain TeX, 1 postscript fig., based on a talk given at the VORTEX Euroconference held in Heraklion, Crete, Sept. 199

    Trust-based regulation

    Get PDF
    Dekker, H.C. [Promotor]Wielhouwer, J.L. [Copromotor

    Genomic Evolution of Two Acinetobacter baumannii Clinical Strains from ST-2 Clones Isolated in 2000 and 2010 (ST-2_clon_2000 and ST-2_clon_2010)

    Get PDF
    Acinetobacter baumannii is a successful nosocomial pathogen due to its ability to persist in hospital environments by acquiring mobile elements such as transposons, plasmids, and phages. In this study, we compared two genomes of A. baumannii clinical strains isolated in 2000 (ST-2_clon_2000) and 2010 (ST-2_clon_2010) from GenBank project PRJNA308422

    Low Temperature Measurements by Infrared Spectroscopy in CoFe2_2O4_4 Ceramic

    Get PDF
    In this paper results of new far-infrared and middle-infrared measurements (wavenumber range of 4000cm-1 - 100cm-1) in the range of the temperature from 300K to 8K of the CoFe2O4 ceramic are presented. The bands positions and their shapes are the same in the wide temperature range. The quality of the sample was investigated by X-ray, EDS and EPMA studies. The CoFe2O4 reveals the cubic structure (Fd-3m) in the temperature range from 85K to 360 K without any traces of distortion. On the current level of knowledge the polycrystalline CoFe2O4 does not exhibit phase transition in the temperature range from 8 K to 300 K.Comment: 10 pages, 6 figure

    A lattice estimate of the g_{D^* D pi} coupling

    Get PDF
    We present the results of the first direct determination of the g_{D^* D pi} coupling using lattice QCD. From our simulations in the quenched approximation, we obtain g_{D^* D pi} = 18.8 +/- 2.3^{+1.1}_{-2.0} and hat(g) = 0.67 +/- 0.08^{+0.04}_{-0.06}. It is in agreement with a recent experimental result from CLEO.Comment: Lattice2002(heavyquark), 3 pages, 3 figure

    Quantized Skyrmion Fields in 2+1 Dimensions

    Full text link
    A fully quantized field theory is developped for the skyrmion topological excitations of the O(3) symmetric CP1^1-Nonlinear Sigma Model in 2+1D. The method allows for the obtainment of arbitrary correlation functions of quantum skyrmion fields. The two-point function is evaluated in three different situations: a) the pure theory; b) the case when it is coupled to fermions which are otherwise non-interacting and c) the case when an electromagnetic interaction among the fermions is introduced. The quantum skyrmion mass is explicitly obtained in each case from the large distance behavior of the two-point function and the skyrmion statistics is inferred from an analysis of the phase of this function. The ratio between the quantum and classical skyrmion masses is obtained, confirming the tendency, observed in semiclassical calculations, that quantum effects will decrease the skyrmion mass. A brief discussion of asymptotic skyrmion states, based on the short distance behavior of the two-point function, is also presented.Comment: Accepted for Physical Review
    corecore