23,683 research outputs found

    Muon diffusion and electronic magnetism in Y2_2Ti2_2O7_7

    Full text link
    We report a μ\muSR study in a Y2_2Ti2_2O7_7 single crystal. We observe slow local field fluctuations at low temperature which become faster as the temperature is increased. Our analysis suggests that muon diffusion is present in this system and becomes small below 40 K and therefore incoherent. A surprisingly strong electronic magnetic signal is observed with features typical for muons thermally diffusing towards magnetic traps below 100\approx 100 K and released from them above this temperature. We attribute the traps to Ti3+^{3+} defects in the diluted limit. Our observations are highly relevant to the persistent spin dynamics debate on R2R_2Ti2_2O7_7 pyrochlores and their crystal quality

    Gapped Excitations in the High-Pressure Antiferromagnetic Phase of URu2_2Si2_2

    Full text link
    We report a neutron scattering study of the magnetic excitation spectrum in each of the three temperature and pressure driven phases of URu2_2Si2_2. We find qualitatively similar excitations throughout the (H0L) scattering plane in the hidden order and large moment phases, with no changes in the ω\hbar\omega-widths of the excitations at the Σ\Sigma = (1.407,0,0) and ZZ = (1,0,0) points, within our experimental resolution. There is, however, an increase in the gap at the Σ\Sigma point from 4.2(2) meV to 5.5(3) meV, consistent with other indicators of enhanced antiferromagnetism under pressure.Comment: 5 pages, 3 figures, 1 tabl

    Quantum Rod Emission Coupled to Plasmonic Lattice Resonances: A Collective Directional Source of Polarized Light

    Get PDF
    We demonstrate that an array of optical antennas may render a thin layer of randomly oriented semiconductor nanocrystals into an enhanced and highly directional source of polarized light. The array sustains collective plasmonic lattice resonances which are in spectral overlap with the emission of the nanocrystals over narrow angular regions. Consequently, different photon energies of visible light are enhanced and beamed into definite directions.Comment: 4 pages, 3 figure

    Theory of Decoupling in the Mixed Phase of Extremely Type-II Layered Superconductors

    Full text link
    The mixed phase of extremely type-II layered superconductors in perpendicular magnetic field is studied theoretically via the layered XY model with uniform frustration. A partial duality analysis is carried out in the weak-coupling limit. It consistently accounts for both intra-layer (pancake) and inter-layer (Josephson) vortex excitations. The main conclusion reached is that dislocations of the two-dimensional (2D) vortex lattices within layers drive a unique second-order melting transition at high perpendicular fields between a low-temperature superconducting phase that displays a Josephson effect and a high-temperature ``normal'' phase that displays no Josephson effect. The former state is best described by weakly coupled 2D vortex lattices, while the latter state is best characterized by a decoupled vortex liquid. It is further argued on the basis of the duality analysis that the second-order melting transition converts itself into a first-order one as the perpendicular field is lowered and approaches the dimensional cross-over scale. The resulting critical endpoint potentially accounts for the same phenomenon that is observed in the mixed phase of clean high-temperature superconductors.Comment: 39 pgs. of PLAIN TeX, 2 postscript figs., published versio

    Distilling Information Reliability and Source Trustworthiness from Digital Traces

    Full text link
    Online knowledge repositories typically rely on their users or dedicated editors to evaluate the reliability of their content. These evaluations can be viewed as noisy measurements of both information reliability and information source trustworthiness. Can we leverage these noisy evaluations, often biased, to distill a robust, unbiased and interpretable measure of both notions? In this paper, we argue that the temporal traces left by these noisy evaluations give cues on the reliability of the information and the trustworthiness of the sources. Then, we propose a temporal point process modeling framework that links these temporal traces to robust, unbiased and interpretable notions of information reliability and source trustworthiness. Furthermore, we develop an efficient convex optimization procedure to learn the parameters of the model from historical traces. Experiments on real-world data gathered from Wikipedia and Stack Overflow show that our modeling framework accurately predicts evaluation events, provides an interpretable measure of information reliability and source trustworthiness, and yields interesting insights about real-world events.Comment: Accepted at 26th World Wide Web conference (WWW-17

    Spatially Resolved Mapping of Local Polarization Dynamics in an Ergodic Phase of Ferroelectric Relaxor

    Get PDF
    Spatial variability of polarization relaxation kinetics in relaxor ferroelectric 0.9Pb(Mg1/3Nb2/3)O3-0.1PbTiO3 is studied using time-resolved Piezoresponse Force Microscopy. Local relaxation attributed to the reorientation of polar nanoregions is shown to follow stretched exponential dependence, exp(-(t/tau)^beta), with beta~~0.4, much larger than the macroscopic value determined from dielectric spectra (beta~~0.09). The spatial inhomogeneity of relaxation time distributions with the presence of 100-200 nm "fast" and "slow" regions is observed. The results are analyzed to map the Vogel-Fulcher temperatures on the nanoscale.Comment: 23 pages, 4 figures, supplementary materials attached; to be submitted to Phys. Rev. Let

    Patient-specific image-based computer simulation for theprediction of valve morphology and calcium displacement after TAVI with the Medtronic CoreValve and the Edwards SAPIEN valve

    Get PDF
    AIMS: Our aim was to validate patient-specific software integrating baseline anatomy and biomechanical properties of both the aortic root and valve for the prediction of valve morphology and aortic leaflet calcium displacement after TAVI. METHODS AND RESULTS: Finite element computer modelling was performed in 39 patients treated with a Medtronic CoreValve System (MCS; n=33) or an Edwards SAPIEN XT (ESV; n=6). Quantitative axial frame morphology at inflow (MCS, ESV) and nadir, coaptation and commissures (MCS) was compared between multislice computed tomography (MSCT) post TAVI and a computer model as well as displacement of the aortic leaflet calcifications, quantified by the distance between the coronary ostium and the closest calcium nodule. Bland-Altman analysis revealed a strong correlation between the observed (MSCT) and predicted frame dimensions, although small differences were detected for, e.g., Dmin at the inflow (mean±SD MSCT vs. MODEL: 21.6±2.4 mm vs. 22.0±2.4 mm; difference±SD: -0.4±1.3 mm, p<0.05) and Dmax (25.6±2.7 mm vs. 26.2±2.7 mm; difference±SD: -0.6±1.0 mm, p<0.01). The observed and predicted calcium displacements were highly correlated for the left and right coronary ostia (R2=0.67 and R2=0.71, respectively p<0.001). CONCLUSIONS: Dedicated software allows accurate prediction of frame morphology and calcium displacement after valve implantation, which may help to improve outcome

    Application of an Equilibrium Vaporization Model to the Ablation of Chondritic and Achondritic Meteoroids

    Full text link
    We modeled equilibrium vaporization of chondritic and achondritic materials using the MAGMA code. We calculated both instantaneous and integrated element abundances of Na, Mg, Ca, Al, Fe, Si, Ti, and K in chondritic and achondritic meteors. Our results are qualitatively consistent with observations of meteor spectra.Comment: 8 pages, 4 figures; in press, Earth, Moon, and Planets, Meteoroids 2004 conference proceeding
    corecore