45,913 research outputs found

    Assessment of flywheel energy storage for spacecraft power systems

    Get PDF
    The feasibility of inertial energy storage in a spacecraft power system is evaluated on the basis of a conceptual integrated design that encompasses a composite rotor, magnetic suspension, and a permanent magnet (PM) motor/generator for a 3-kW orbital average payload at a bus distribution voltage of 250 volts dc. The conceptual design, which evolved at the Goddard Space Flight Center (GSFC), is referred to as a Mechanical Capacitor. The baseline power system configuration selected is a series system employing peak-power-tracking for a Low Earth-Orbiting application. Power processing, required in the motor/generator, provides a potential alternative configurations that can only be achieved in systems with electrochemical energy storage by the addition of power processing components. One such alternative configuration provides for peak-power-tracking of the solar array and still maintains a regulated bus, without the expense of additional power processing components. Precise speed control of the two counterrotating wheels is required to reduce interaction with the attitude control system (ACS) or alternatively, used to perform attitude control functions. Critical technologies identified are those pertaining to the energy storage element and are prioritized as composite wheel development, magnetic suspension, motor/generator, containment, and momentum control. Comparison with a 3-kW, 250-Vdc power system using either NiCd or NiH2 for energy storage results in a system in which inertial energy storage offers potential advantages in lifetime, operating temperature, voltage regulation, energy density, charge control, and overall system weight reduction

    Elastomer Compound Developed for High Wear Applications

    Get PDF
    The U.S. Army is currently spending 300 million dollars per year replacing rubber track pads. An experimental rubber compound has been developed which exhibits 2 to 3 times greater service life than standard production pad compounds. To improve the service life of the tank track pads various aspects of rubber chemistry were explored including polymer, curing and reinforcing systems. Compounds that exhibited superior physical properties based on laboratory data were then fabricated into tank pads and field tested. This paper will discuss the compounding studies, laboratory data and field testing that led to the high wear elastomer compound

    Simultaneous analysis of elastic scattering and transfer/breakup channels for the 6He+208Pb reaction at energies near the Coulomb barrier

    Get PDF
    The elastic and alpha-production channels for the 6He+208Pb reaction are investigated at energies around the Coulomb barrier (E_{lab}=14, 16, 18, 22, and 27 MeV). The effect of the two-neutron transfer channels on the elastic scattering has been studied within the Coupled-Reaction-Channels (CRC) method. We find that the explicit inclusion of these channels allows a simultaneous description of the elastic data and the inclusive alpha cross sections at backward angles. Three-body Continuum-Discretized Coupled-Channels (CDCC) calculations are found to reproduce the elastic data, but not the transfer/breakup data. The trivially-equivalent local polarization potential (TELP) derived from the CRC and CDCC calculations are found to explain the features found in previous phenomenological optical model calculations for this system.Comment: 7 pages, 6 figures (replaced with updated version

    Cooper-pair coherence in a superfluid Fermi-gas of atoms

    Full text link
    We study the coherence properties of a trapped two-component gas of fermionic atoms below the BCS critical temperature. We propose an optical method to investigate the Cooper-pair coherence across different regions of the superfluid. Near-resonant laser light is used to induce transitions between the two coupled hyperfine states. The beam is split so that it probes two spatially separate regions of the gas. Absorption of the light in this interferometric scheme depends on the Cooper-pair coherence between the two regions.Comment: 10 pages, 5 figures. Submitted to J. Phys. B as a proceedings of the Salerno 2001 BEC worksho

    Berezinskii-Kosterlitz-Thouless Transition in Spin-Charge Separated Superconductor

    Full text link
    A model for spin-charge separated superconductivity in two dimensions is introduced where the phases of the spinon and holon order parameters couple gauge-invariantly to a statistical gauge-field representing chiral spin-fluctuations. The model is analyzed in the continuum limit and in the low-temperature limit. In both cases we find that physical electronic phase correlations show a superconducting-normal phase transition of the Berezinskii-Kosterlitz-Thouless type, while statistical gauge-field excitations are found to be strictly gapless. The normal-to-superconductor phase boundary for this model is also obtained as a function of carrier density, where we find that its shape compares favorably with that of the experimentally observed phase diagram for the oxide superconductors.Comment: 35 pages, TeX, CSLA-P-93-

    Simbol-X Background Minimization: Mirror Spacecraft Passive Shielding Trade-Off Study

    Full text link
    The present work shows a quantitative trade-off analysis of the Simbol-X Mirror Spacecraft (MSC) passive shielding, in the phase space of the various parameters: mass budget, dimension, geometry, and composition. A simplified physical (and geometrical) model of the sky screen, implemented by means of a GEANT4 simulation, has been developed to perform a performance-driven mass optimization and evaluate the residual background level on Simbol-X focal plane.Comment: 3 pages, 6 figures, to appear in the proceedings of the second Simbol-X International Symposium "Simbol-X - Focusing on the Hard X-ray Universe", AIP Conf. Proc. Series, P. Ferrando and J. Rodriguez ed
    corecore