693 research outputs found

    Is Multiple Sclerosis an Autoimmune Disease?

    Get PDF
    Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS) with varied clinical presentations and heterogeneous histopathological features. The underlying immunological abnormalities in MS lead to various neurological and autoimmune manifestations. There is strong evidence that MS is, at least in part, an immune-mediated disease. There is less evidence that MS is a classical autoimmune disease, even though many authors state this in the description of the disease. We show the evidence that both supports and refutes the autoimmune hypothesis. In addition, we present an alternate hypothesis based on virus infection to explain the pathogenesis of MS

    Acute hemorrhagic demyelination in a murine model of multiple sclerosis

    Get PDF
    Acute hemorrhagic leukoencephalomyelitis (AHLE) is a rare neurological condition characterized by the development of acute hemorrhagic demyelination and high mortality. The pathomechanism of AHLE, as well as potential therapeutic approaches, have remained elusive due to the lack of suitable animal models. We report the first murine model of AHLE using a variation of the Theiler's Murine Encephalitis Virus (TMEV) MS model. During acute TMEV infection, C57BL/6 mice do not normally undergo demyelination. However, when 7 day TMEV infected C57BL/6 mice are intravenously administered the immunodominant CD8 T cell peptide, VP2121–130, animals develop characteristics of human AHLE based on pathologic, MRI and clinical features including microhemorrhages, increased blood-brain barrier permeability, and demyelination. The animals also develop severe disability as assessed using the rotarod assay. This study demonstrates the development of hemorrhagic demyelination in TMEV infected C57BL/6 mice within 24 hours of inducing this condition through intravenous administration of CD8 T cell restricted peptide. This study is also the first demonstration of rapid demyelination in a TMEV resistant non-demyelinating strain without transgenic alterations or pharmacologically induced immunosuppression

    Novel Roles of the Picornaviral 3D Polymerase in Viral Pathogenesis

    Get PDF
    The RNA-dependent RNA-polymerase, 3D(pol), is an essential component in the picornavirus genome for the replication of single stranded RNA. However, transgenic expression of 3D(pol) in mice has antiviral effects. Here, we discuss the structure and function of 3D(pol) during picornavirus replication, we review the evidence and consequence of a host immune response to epitopes in 3D(pol) after picornavirus infection, highlight data showing the antiviral effects of transgenic 3D(pol) from Theiler's murine encephalomyelitis virus (TMEV), and discuss potential mechanisms by which 3D(pol) is causing this antiviral effect in mice

    Remyelination Induced by a DNA Aptamer in a Mouse Model of Multiple Sclerosis

    Get PDF
    Multiple sclerosis (MS) is a debilitating inflammatory disease of the central nervous system (CNS) characterized by local destruction of the insulating myelin surrounding neuronal axons. With more than 200 million MS patients worldwide, the absence of treatments that prevent progression or induce repair poses a major challenge. Anti-inflammatory therapies have met with limited success only in preventing relapses. Previous screening of human serum samples revealed natural IgM antibodies that bind oligodendrocytes and promote both cell signaling and remyelination of CNS lesions in an MS model involving chronic infection of susceptible mice by Theiler’s encephalomyelitis virus and in the lysolecithin model of focal demyelination. This intriguing result raises the possibility that molecules with binding specificity for oligodendrocytes or myelin components may promote therapeutic remyelination in MS. Because of the size and complexity of IgM antibodies, it is of interest to identify smaller myelin-specific molecules with the ability to promote remyelination in vivo. Here we show that a 40-nucleotide single-stranded DNA aptamer selected for affinity to murine myelin shows this property. This aptamer binds multiple myelin components in vitro. Peritoneal injection of this aptamer results in distribution to CNS tissues and promotes remyelination of CNS lesions in mice infected by Theiler’s virus. Interestingly, the selected DNA aptamer contains guanosine-rich sequences predicted to induce folding involving guanosine quartet structures. Relative to monoclonal antibodies, DNA aptamers are small, stable, and non-immunogenic, suggesting new possibilities for MS treatment

    The p75NTR-interacting protein SC1 inhibits cell cycle progression by transcriptional repression of cyclin E

    Get PDF
    Schwann cell factor 1 (SC1), a p75 neurotrophin receptor–interacting protein, is a member of the positive regulatory/suppressor of variegation, enhancer of zeste, trithorax (PR/SET) domain-containing zinc finger protein family, and it has been shown to be regulated by serum and neurotrophins. SC1 shows a differential cytoplasmic and nuclear distribution, and its presence in the nucleus correlates strongly with the absence of bromodeoxyuridine (BrdU) in these nuclei. Here, we investigated potential transcriptional activities of SC1 and analyzed the function of its various domains. We show that SC1 acts as a transcriptional repressor when it is tethered to Gal4 DNA-binding domain. The repressive activity requires a trichostatin A–sensitive histone deacetylase (HDAC) activity, and SC1 is found in a complex with HDACs 1, 2, and 3. Transcriptional repression exerted by SC1 requires the presence of its zinc finger domains and the PR domain. Additionally, these two domains are involved in the efficient block of BrdU incorporation by SC1. The zinc finger domains are also necessary to direct SC1's nuclear localization. Lastly, SC1 represses the promoter of a promitotic gene, cyclin E, suggesting a mechanism for how growth arrest is regulated by SC1

    A Single Dose of Neuron-Binding Human Monoclonal Antibody Improves Spontaneous Activity in a Murine Model of Demyelination

    Get PDF
    Our laboratory demonstrated that a natural human serum antibody, sHIgM12, binds to neurons in vitro and promotes neurite outgrowth. We generated a recombinant form, rHIgM12, with identical properties. Intracerebral infection with Theiler's Murine Encephalomyelitis Virus (TMEV) of susceptible mouse strains results in chronic demyelinating disease with progressive axonal loss and neurologic dysfunction similar to progressive forms of multiple sclerosis. To study the effects of rHIgM12 on the motor function of TMEV-infected mice, we monitored spontaneous nocturnal activity over many weeks. Nocturnal behavior is a sensitive measure of rodent neurologic function because maximal activity changes are expected to occur during the normally active night time monitoring period. Mice were placed in activity boxes eight days prior to treatment to collect baseline spontaneous activity. After treatment, activity in each group was continuously recorded over 8 weeks. We chose a long 8-week monitoring period for two reasons: (1) we previously demonstrated that IgM induced remyelination is present by 5 weeks post treatment, and (2) TMEV-induced demyelinating disease in this strain progresses very slowly. Due to the long observation periods and large data sets, differences among treatment groups may be difficult to appreciate studying the original unfiltered recordings. To clearly delineate changes in the highly fluctuating original data we applied three different methods: (1) binning, (2) application of Gaussian low-pass filters (GF) and (3) polynomial fitting. Using each of the three methods we showed that compared to control IgM and saline, early treatment with rHIgM12 induced improvement in both horizontal and vertical motor function, whereas later treatment improved only horizontal activity. rHIgM12 did not alter activity of normal, uninfected mice. This study supports the hypothesis that treatment with a neuron-binding IgM not only protects neurons in vitro, but also influences functional motor improvement

    Cross-linking the B7 Family Molecule B7-DC Directly Activates Immune Functions of Dendritic Cells

    Get PDF
    B7-DC molecules are known to function as ligands on antigen-presenting cells (APCs), enhancing T cell activation. In this study, cross-linking B7-DC with the monoclonal antibody sHIgM12 directly potentiates dendritic cell (DC) function by enhancing DC presentation of major histocompatibility complex–peptide complexes, promoting DC survival; and increasing secretion of interleukin (IL)-12p70, a key T helper cell type 1 promoting cytokine. Furthermore, ex vivo treatment of DCs or systemic treatment of mice with sHIgM12 increases the number of transplanted DCs that reach draining lymph nodes and increases the ability of lymph node APCs to activate naive T cells. Systemic administration of the antibody has an equivalent effect on DCs transferred at a distant site. These findings implicate B7-DC expressed on DCs in bidirectional communication. In addition to the established costimulatory and inhibitory functions associated with B7-DC, this molecule can also function as a conduit for extracellular signals to DCs modifying DC functions
    corecore