4,038 research outputs found

    Methanol dehydration over ZrO2 supported-activated carbons

    Get PDF
    Resumen comunicaciĂłn congreso internacionalDME is playing an important role due to its potential use as an alternative fuel in diesel engines. The use of this fuel produces lower NOx emissions, and less engine noise compared to traditional diesel fuels. Moreover, this compound is used as building block for many value-added chemicals such as lower olefins. DME is usually produced via catalytic dehydration of methanol over a solid acid. The use of activated carbons in catalytic processes, acting directly as catalyst and as catalyst support, is focussing much attention. They can be obtained from different types of lignocellulosic waste, producing not only an environmental but an economical profit. In this sense, the preparation of activated carbons with phosphoric acid produces catalytic supports with certain surface acidity, which have shown high activity for alcohol dehydration. In this study, ZrO2 supported activated carbons were prepared from an industrial byproduct as lignin for the methanol dehydration to DME. The activated carbon was prepared by chemical activation with H3PO4, using AlcellÂź lignin as precursor. The impregnation ratio value (H3PO4/lignin) used was 3. The impregnated sample was activated under N2 flow at 500 ÂșC for 2h, washed and dried. The activated carbon was loaded with different amounts of ZrO(NO3)2, dried at 120ÂșC for 24h, and calcined in air at 250ÂșC for 2h, obtaining ZrO2 loadings of 5 and 10%, respectively. For the sake of comparison, pure ZrO2 was also used. Catalytic tests were performed at atmospheric pressure in a fixed bed reactor, at different space times and partial pressures. The activated carbon (ACP) prepared shows a well-developed porous structure, with an apparent surface area higher than 2000 m2/g, and a high contribution of mesoporosity. After metal loading, a maximum decrease of 20% in all structural parameters of the ACP was observed.The results show that ZrO2 loading produces an enhancing in the catalytic activity of the carbon materials compared to the parent activated carbon (0.1 g·s/ÎŒmol, PCH3OH= 0.02 atm in helium and 350 ÂșC). In this sense, a methanol conversion of 25% was observed with the addition of 10% w/w ZrO2 (ACP-10Zr), at steady state conditions (Figure 1). ACP shows negligible conversion, at the same conditions and for pure ZrO2 the methanol conversion was of 10%. Very high selectivity to DME (~100%) was found at temperatures lower than 350 ÂșC. The methanol conversion increases with temperature, reaching a value of 67% at 475ÂșC, but a slight decrease in DME selectivity is observed, resulting in a higher production of light hydrocarbons, mainly CH4. The results suggest that the addition of only a 10% of ZrO2 over an activated carbon prepared by chemical activation with H3PO4 enhances significantly the performance of the catalyst, compared to pure ZrO2.Universidad de MĂĄlaga. Campus de Excelencia Internacional AndalucĂ­a Tech

    Berezinskii-Kosterlitz-Thouless Transition in Spin-Charge Separated Superconductor

    Full text link
    A model for spin-charge separated superconductivity in two dimensions is introduced where the phases of the spinon and holon order parameters couple gauge-invariantly to a statistical gauge-field representing chiral spin-fluctuations. The model is analyzed in the continuum limit and in the low-temperature limit. In both cases we find that physical electronic phase correlations show a superconducting-normal phase transition of the Berezinskii-Kosterlitz-Thouless type, while statistical gauge-field excitations are found to be strictly gapless. The normal-to-superconductor phase boundary for this model is also obtained as a function of carrier density, where we find that its shape compares favorably with that of the experimentally observed phase diagram for the oxide superconductors.Comment: 35 pages, TeX, CSLA-P-93-

    Influence of boron content on the fracture toughness and fatigue crack propagation kinetics of bainitic steels

    Get PDF
    The relatively good combination of high strength and ductility makes bainitic steels a candidate to replace many other steels in industrial applications. However, in service, ductility and strength are not up to standard requirements. In many industrial components, toughness and fatigue performance are also very relevant. In the present study, bainitic steels with varying content of boron were fabricated, with the aim of analyzing the fracture toughness and changes in the fatigue life. The results show that a relatively small change in the boron content can cause a notable variation in the fracture toughness of bainitic steels. The maximum value obtained in fracture toughness was for the steel with the highest boron content. It was observed that the amount of interlath martensite constituents decreases in steels with the addition of boron, leading to the promotion of the presence of void coalescence and a remarkable rise in the toughness of bainitic steels. An increase on the fatigue life of the bainitic steels with an increase in the boron content was also observed, through analysis by means of Paris’ law. A comprehensive micrographic study was carried out in order to examine the mechanics of fatigue crack growth in the bainitic steels, revealing small longitudinal cracks in bainitic steels that lack boron. These cracks tend to disappear in bainitic steels that contain boron. To elucidate this behavior, micrographs of the surfaces generated by the crack growth process were taken, showing that several nano-cracks appeared between the bainite laths. It is finally argued that this high-energy consumption process of nano-crack nucleation and growth is the reason for the improved toughness and fatigue life observed in bainitic steels.Peer ReviewedPostprint (author's final draft

    Defective Vortex Lattices in Layered Superconductors with Point Pins at the Extreme Type-II Limit

    Full text link
    The mixed phase of layered superconductors with no magnetic screening is studied through a partial duality analysis of the corresponding frustrated XY model in the presence of weak random point pins. Isolated layers exhibit a defective vortex lattice at low temperature that is phase coherent. Sufficiently weak Josephson coupling between adjacent layers results in an entangled vortex solid that exhibits weak superconductivity across layers. The corresponding vortex liquid state shows an inverted specific heat anomaly that we propose accounts for that seen in YBCO. A three-dimensional vortex lattice with dislocations occurs at stronger coupling. This crossover sheds light on the apparent discrepancy concerning the observation of a vortex-glass phase in recent Monte Carlo simulations of the same XY model.Comment: 4 pages, 1 figure. To appear in PRB, rapid communicatio

    A Fungal Effector With Host Nuclear Localization and DNA-Binding Properties Is Required for Maize Anthracnose Development

    Get PDF
    Plant pathogens have the capacity to manipulate the host immune system through the secretion of effectors. We identified 27 putative effector proteins encoded in the genome of the maize anthracnose pathogen Colletotrichum graminicola that are likely to target the host’s nucleus, as they simultaneously contain sequence signatures for secretion and nuclear localization. We functionally characterized one protein, identified as CgEP1. This protein is synthesized during the early stages of disease development and is necessary for anthracnose development in maize leaves, stems, and roots. Genetic, molecular, and biochemical studies confirmed that this effector targets the host’s nucleus and defines a novel class of double-stranded DNA-binding protein. We show that CgEP1 arose from a gene duplication in an ancestor of a lineage of monocot-infecting Colletotrichum spp. and has undergone an intense evolution process, with evidence for episodes of positive selection. We detected CgEP1 homologs in several species of a grass-infecting lineage of Colletotrichum spp., suggesting that its function may be conserved across a large number of anthracnose pathogens. Our results demonstrate that effectors targeted to the host nucleus may be key elements for disease development and aid in the understanding of the genetic basis of anthracnose development in maize plants.Fil: Vargas, Walter Alberto. Universidad de Salamanca; España. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; ArgentinaFil: Sanz MartĂ­n, JosĂ© M.. Universidad de Salamanca; EspañaFil: Rech, Gabriel E.. Universidad de Salamanca; EspañaFil: Armijos Jaramillo, Vinicio D.. Universidad de Salamanca; EspañaFil: Rivera Rodriguez, Lina Patricia. Universidad de Salamanca; EspañaFil: Echeverria, MarĂ­a de Las Mercedes. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; ArgentinaFil: DĂ­az MĂ­nguez, JosĂ© M.. Universidad de Salamanca; EspañaFil: Thon, Michael R.. Universidad de Salamanca; EspañaFil: Sukno, Serenella A.. Universidad de Salamanca; Españ

    GPCA vs. PCA in Recognition and 3-D Localization of Ultrasound Reflectors

    Get PDF
    In this paper, a new method of classification and localization of reflectors, using the time-of-flight (TOF) data obtained from ultrasonic transducers, is presented. The method of classification and localization is based on Generalized Principal Component Analysis (GPCA) applied to the TOF values obtained from a sensor that contains four ultrasound emitters and 16 receivers. Since PCA works with vectorized representations of TOF, it does not take into account the spatial locality of receivers. The GPCA works with two-dimensional representations of TOF, taking into account information on the spatial position of the receivers. This report includes a detailed description of the method of classification and localization and the results of achieved tests with three types of reflectors in 3-D environments: planes, edges, and corners. The results in terms of processing time, classification and localization were very satisfactory for the reflectors located in the range of 50–350 cm
    • 

    corecore