8,570 research outputs found

    Intracellular trafficking and cellular uptake mechanism of PHBV nanoparticles for targeted delivery in epithelial cell lines

    Get PDF
    Indexación: Web of Science; Scopus; Scielo.Background: Nanotechnology is a science that involves imaging, measurement, modeling and a manipulation of matter at the nanometric scale. One application of this technology is drug delivery systems based on nanoparticles obtained from natural or synthetic sources. An example of these systems is synthetized from poly(3-hydroxybutyrate-co-3-hydroxyvalerate), which is a biodegradable, biocompatible and a low production cost polymer. The aim of this work was to investigate the uptake mechanism of PHBV nanoparticles in two different epithelial cell lines (HeLa and SKOV-3). Results: As a first step, we characterized size, shape and surface charge of nanoparticles using dynamic light scattering and transmission electron microscopy. Intracellular incorporation was evaluated through flow cytometry and fluorescence microscopy using intracellular markers. We concluded that cellular uptake mechanism is carried out in a time, concentration and energy dependent way. Our results showed that nanoparticle uptake displays a cell-specific pattern, since we have observed different colocalization in two different cell lines. In HeLa (Cervical cancer cells) this process may occur via classical endocytosis pathway and some internalization via caveolin-dependent was also observed, whereas in SKOV-3 (Ovarian cancer cells) these patterns were not observed. Rearrangement of actin filaments showed differential nanoparticle internalization patterns for HeLa and SKOV-3. Additionally, final fate of nanoparticles was also determined, showing that in both cell lines, nanoparticles ended up in lysosomes but at different times, where they are finally degraded, thereby releasing their contents. Conclusions: Our results, provide novel insight about PHBV nanoparticles internalization suggesting that for develop a proper drug delivery system is critical understand the uptake mechanism.https://jnanobiotechnology.biomedcentral.com/articles/10.1186/s12951-016-0241-

    Quantum fluctuations in high field magnetization of 2D square lattice J1-J2 antiferromagnets

    Full text link
    The J1-J2 square lattice Heisenberg model with spin S=1/2 has three phases with long-range magnetic order and two unconventionally ordered phases depending on the ratio of exchange constants. It describes a number of recently found layered vanadium oxide compounds. A simple means of investigating the ground state is the study of the magnetization curve and high-field susceptibility. We discuss these quantities by using the spin-wave theory and the exact diagonalization in the whole J1-J2 plane. We compare both results and find good overall agreement in the sectors of the phase diagram with magnetic order. Close to the disordered regions the magnetization curve shows strong deviations from the classical linear behaviour caused by large quantum fluctuations and spin-wave approximation breaks down. On the FM side (J1<0) where one approaches the quantum gapless spin nematic ground state this region is surprisingly large. We find that inclusion of second order spin-wave corrections does not lead to fundamental improvement. Quantum corrections to the tilting angle of the ordered moments are also calculated. They may have both signs, contrary to the always negative first order quantum corrections to the magnetization. Finally we investigate the effect of the interlayer coupling and find that the quasi-2D picture remains valid up to |J_\perp/J1| ~ 0.3.Comment: 13 pages, 6figure

    p-wave Holographic Superconductors and five-dimensional gauged Supergravity

    Full text link
    We explore five-dimensional N=4{\cal N}=4 SU(2)×U(1)SU(2)\times U(1) and N=8{\cal N}=8 SO(6) gauged supergravities as frameworks for condensed matter applications. These theories contain charged (dilatonic) black holes and 2-forms which have non-trivial quantum numbers with respect to U(1) subgroups of SO(6). A question of interest is whether they also contain black holes with two-form hair with the required asymptotic to give rise to holographic superconductivity. We first consider the N=4{\cal N}=4 case, which contains a complex two-form potential AμνA_{\mu\nu} which has U(1) charge ±1\pm 1. We find that a slight generalization, where the two-form potential has an arbitrary charge qq, leads to a five-dimensional model that exhibits second-order superconducting transitions of p-wave type where the role of order parameter is played by AμνA_{\mu\nu}, provided q5.6q \gtrsim 5.6. We identify the operator that condenses in the dual CFT, which is closely related to N=4{\cal N}=4 Super Yang-Mills theory with chemical potentials. Similar phase transitions between R-charged black holes and black holes with 2-form hair are found in a generalized version of the N=8{\cal N}=8 gauged supergravity Lagrangian where the two-forms have charge q1.8q\gtrsim 1.8.Comment: 35 pages, 14 figure

    Nanoscale friction of biomimetic hair surfaces

    Get PDF
    We investigate the nanoscale friction between biomimetic hair surfaces using chemical colloidal probe atomic force microscopy experiments and nonequilibrium molecular dynamics simulations. In the experiments, friction is measured between water-lubricated silica surfaces functionalised with monolayers formed from either octadecyl or sulfonate groups, which are representative of the surfaces of virgin and ultimately bleached hair, respectively. In the simulations, friction is monitored between coarse-grained model hair surfaces with different levels of chemical damage, where a specified amount of grafted octadecyl groups are randomly replaced with sulfonate groups. The sliding velocity dependence of friction in the simulations can be described using an extended stress-augmented thermally activation model. As the damage level increases in the simulations, the friction coefficient generally increases, but its sliding velocity-dependence decreases. At low sliding velocities, which are closer to those encountered experimentally and physiologically, we observe a monotonic increase of the friction coefficient with damage ratio, which is consistent with our new experiments using biomimetic surfaces and previous ones using real hair. This observation demonstrates that modified surface chemistry, rather than roughness changes or subsurface damage, control the increase in nanoscale friction of bleached or chemically damaged hair. We expect the methods and biomimetic surfaces proposed here to be useful to screen the tribological performance of hair care formulations both experimentally and computationally

    Statistical analyses of correlation between fluconazole MICs for Candida spp. assessed by standard methods set forth by the European Committee on Antimicrobial Susceptibility Testing (E.Dis. 7.1) and CLSI (M27-A2).

    Get PDF
    The European Committee on Antimicrobial Susceptibility Testing (EUCAST) Subcommittee on Antifungal Susceptibility Testing recently published a standard for determining the susceptibility of fermentative yeasts to antifungals. From the beginning, the EUCAST and its North American counterpart, the CLSI, decided to work together in order to establish common standards. As part of this exercise, the susceptibility of a set of 475 yeast isolates was tested by both standards. The intraclass correlation coefficient and the equations defining the linear regression between both methods were estimated. Both methods produced very similar results, with an intraclass correlation coefficient of 0.954 (0.945 to 0.962), although linear regression analysis shows that the EUCAST standard resulted in slightly lower MICs. There were only eight isolates showing at least four twofold dilution MIC differences between both standards. After 24 h of incubation, the MICs obtained by the CLSI method were equivalent to those obtained by the EUCAST standard. In summary, both methods produce very similar MICs, indicating that methodology does not pose any obstacle to obtaining uniform standards for antifungal susceptibility testing of yeast

    Ageing memory and glassiness of a driven vortex system

    Full text link
    Many systems in nature, glasses, interfaces and fractures being some examples, cannot equilibrate with their environment, which gives rise to novel and surprising behaviour such as memory effects, ageing and nonlinear dynamics. Unlike their equilibrated counterparts, the dynamics of out-of- equilibrium systems is generally too complex to be captured by simple macroscopic laws. Here we investigate a system that straddles the boundary between glass and crystal: a Bragg glass formed by vortices in a superconductor. We find that the response to an applied force evolves according to a stretched exponential, with the exponent reflecting the deviation from equilibrium. After the force is removed, the system ages with time and its subsequent response time scales linearly with its age (simple ageing), meaning that older systems are slower than younger ones. We show that simple ageing can occur naturally in the presence of sufficient quenched disorder. Moreover, the hierarchical distribution of timescales, arising when chunks of loose vortices cannot move before trapped ones become dislodged, leads to a stretched-exponential response.Comment: 16 pages, 5 figure
    corecore