3,735 research outputs found
Casimir forces on a silicon micromechanical chip
Quantum fluctuations give rise to van der Waals and Casimir forces that
dominate the interaction between electrically neutral objects at sub-micron
separations. Under the trend of miniaturization, such quantum electrodynamical
effects are expected to play an important role in micro- and nano-mechanical
devices. Nevertheless, utilization of Casimir forces on the chip level remains
a major challenge because all experiments so far require an external object to
be manually positioned close to the mechanical element. Here, by integrating a
force-sensing micromechanical beam and an electrostatic actuator on a single
chip, we demonstrate the Casimir effect between two micromachined silicon
components on the same substrate. A high degree of parallelism between the two
near-planar interacting surfaces can be achieved because they are defined in a
single lithographic step. Apart from providing a compact platform for Casimir
force measurements, this scheme also opens the possibility of tailoring the
Casimir force using lithographically defined components of non-conventional
shapes
Longitudinal residual strain and stress-strain relationship in rat small intestine
BACKGROUND: To obtain a more detailed description of the stress-free state of the intestinal wall, longitudinal residual strain measurements are needed. Furthermore, data on longitudinal stress-strain relations in visceral organs are scarce. The present study aims to investigate the longitudinal residual strain and the longitudinal stress-strain relationship in the rat small intestine. METHODS: The longitudinal zero-stress state was obtained by cutting tissue strips parallel to the longitudinal axis of the intestine. The longitudinal residual stress was characterized by a bending angle (unit: degrees per unit length and positive when bending outwards). Residual strain was computed from the change in dimensions between the zero-stress state and the no-load state. Longitudinal stresses and strains were computed from stretch experiments in the distal ileum at luminal pressures ranging from 0â4 cmH(2)O. RESULTS: Large morphometric variations were found between the duodenum and ileum with the largest wall thickness and wall area in the duodenum and the largest inner circumference and luminal area in the distal ileum (p < 0.001). The bending angle did not differ between the duodenum and ileum (p > 0.5). The longitudinal residual strain was tensile at the serosal surface and compressive at the mucosal surface. Hence, the neutral axis was approximately in the mid-wall. The longitudinal residual strain and the bending angle was not uniform around the intestinal circumference and had the highest values on the mesenteric sides (p < 0.001). The stress-strain curves fitted well to the mono-exponential function with determination coefficients above 0.96. The α constant increased with the pressure, indicating the intestinal wall became stiffer in longitudinal direction when pressurized. CONCLUSION: Large longitudinal residual strains reside in the small intestine and showed circumferential variation. This indicates that the tissue is not uniform and cannot be treated as a homogenous material. The longitudinal stiffness of the intestinal wall increased with luminal pressure. Longitudinal residual strains must be taken into account in studies of gastrointestinal biomechanical properties
Local variation of hashtag spike trains and popularity in Twitter
We draw a parallel between hashtag time series and neuron spike trains. In
each case, the process presents complex dynamic patterns including temporal
correlations, burstiness, and all other types of nonstationarity. We propose
the adoption of the so-called local variation in order to uncover salient
dynamics, while properly detrending for the time-dependent features of a
signal. The methodology is tested on both real and randomized hashtag spike
trains, and identifies that popular hashtags present regular and so less bursty
behavior, suggesting its potential use for predicting online popularity in
social media.Comment: 7 pages, 7 figure
Genome-wide analysis of ivermectin response by Onchocerca volvulus reveals that genetic drift and soft selective sweeps contribute to loss of drug sensitivity
Treatment of onchocerciasis using mass ivermectin administration has reduced morbidity and transmission throughout Africa and Central/South America. Mass drug administration is likely to exert selection pressure on parasites, and phenotypic and genetic changes in several Onchocerca volvulus populations from Cameroon and Ghana-exposed to more than a decade of regular ivermectin treatment-have raised concern that sub-optimal responses to ivermectin's anti-fecundity effect are becoming more frequent and may spread.Pooled next generation sequencing (Pool-seq) was used to characterise genetic diversity within and between 108 adult female worms differing in ivermectin treatment history and response. Genome-wide analyses revealed genetic variation that significantly differentiated good responder (GR) and sub-optimal responder (SOR) parasites. These variants were not randomly distributed but clustered in ~31 quantitative trait loci (QTLs), with little overlap in putative QTL position and gene content between the two countries. Published candidate ivermectin SOR genes were largely absent in these regions; QTLs differentiating GR and SOR worms were enriched for genes in molecular pathways associated with neurotransmission, development, and stress responses. Finally, single worm genotyping demonstrated that geographic isolation and genetic change over time (in the presence of drug exposure) had a significantly greater role in shaping genetic diversity than the evolution of SOR.This study is one of the first genome-wide association analyses in a parasitic nematode, and provides insight into the genomics of ivermectin response and population structure of O. volvulus. We argue that ivermectin response is a polygenically-determined quantitative trait (QT) whereby identical or related molecular pathways but not necessarily individual genes are likely to determine the extent of ivermectin response in different parasite populations. Furthermore, we propose that genetic drift rather than genetic selection of SOR is the underlying driver of population differentiation, which has significant implications for the emergence and potential spread of SOR within and between these parasite populations
Phylodynamics of foot-and-mouth disease virus O/PanAsia in Vietnam 2010-2014
© 2017 The Author(s). Foot-and-mouth disease virus (FMDV) is endemic in Vietnam, a country that plays an important role in livestock trade within Southeast Asia. The large populations of FMDV-susceptible species in Vietnam are important components of food production and of the national livelihood. In this study, we investigated the phylogeny of FMDV O/PanAsia in Vietnam, reconstructing the virus' ancestral host species (pig, cattle or buffalo), clinical stage (subclinical carrier or clinically affected) and geographical location. Phylogenetic divergence time estimation and character state reconstruction analyses suggest that movement of viruses between species differ. While inferred transmissions from cattle to buffalo and pigs and from pigs to cattle are well supported, transmission from buffalo to other species, and from pigs to buffalo may be less frequent. Geographical movements of FMDV O/PanAsia virus appears to occur in all directions within the country, with the South Central Coast and the Northeast regions playing a more important role in FMDV O/PanAsia spread. Genetic selection of variants with changes at specific sites within FMDV VP1 coding region was different depending on host groups analyzed. The overall ratio of non-synonymous to synonymous nucleotide changes was greater in pigs compared to cattle and buffalo, whereas a higher number of individual amino acid sites under positive selection were detected in persistently infected, subclinical animals compared to viruses collected from clinically diseased animals. These results provide novel insights to understand FMDV evolution and its association with viral spread within endemic countries. These findings may support animal health organizations in their endeavor to design animal disease control strategies in response to outbreaks
Safety and efficacy of umbilical cord-derived Wharton's jelly compared to hyaluronic acid and saline for knee osteoarthritis: study protocol for a randomized, controlled, single-blind, multi-center trial.
BACKGROUND: Osteoarthritis (OA) is the most common joint disorder in the United States of America (USA) with a fast-rising prevalence. Current treatment modalities are limited, and total knee replacement surgeries have shown disadvantages, especially for grade II/III OA. The interest in the use of biologics, including umbilical cord (UC)-derived Wharton's jelly (WJ), has grown in recent years. The results from a preliminary study demonstrated the presence of essential components of regenerative medicine, namely growth factors, cytokines, hyaluronic acid (HA), and extracellular vesicles, including exosomes, in WJ. The proposed study aims to evaluate the safety and efficacy of intra-articular injection of UC-derived WJ for the treatment of knee OA symptoms. METHODS: A randomized, controlled, single-blind, multi-center, prospective study will be conducted in which the safety and efficacy of intra-articular administration of UC-derived WJ are compared to HA (control) and saline (placebo control) in patients suffering from grade II/III knee OA. A total of 168 participants with grade II or III knee OA on the KL scale will be recruited across 53 sites in the USA with 56 participants in each arm and followed for 1 year post-injection. Patient satisfaction, Numeric Pain Rating Scale, Knee Injury and Osteoarthritis Outcome Score, 36-Item Short Form Survey (SF-36), and 7-point Likert Scale will be used to assess the participants. Physical exams, X-rays, and MRI with Magnetic Resonance Observation of Cartilage Repair Tissue score will be used to assess improvement in associated anatomy. DISCUSSION: The study results will provide valuable information into the safety and efficacy of intra-articular administration of Wharton's jelly for grade II/III knee osteoarthritis. The results of this study will also add to the treatment options available for grade II/III OA as well as help facilitate the development of a more focused treatment strategy for patients. TRIAL REGISTRATION: ClinicalTrials.gov, NCT04711304 . Registered on January 15, 2021
Exclusion of NFAT5 from Mitotic Chromatin Resets Its Nucleo-Cytoplasmic Distribution in Interphase
The transcription factor NFAT5 is a major inducer of osmoprotective genes and is required to maintain the proliferative capacity of cells exposed to hypertonic stress. In response to hypertonicity, NFAT5 translocates to the nucleus, binds to regulatory regions of osmoprotective genes and activates their transcription. Besides stimulus-specific regulatory mechanisms, the activity of transcription factors in cycling cells is also regulated by the passage through mitosis, when most transcriptional processes are downregulated. It was not known whether mitosis could be a point of control for NFAT5.Using confocal microscopy we observed that NFAT5 was excluded from chromatin during mitosis in both isotonic and hypertonic conditions. Analysis of NFAT5 deletions showed that exclusion was mediated by the carboxy-terminal domain (CTD). NFAT5 mutants lacking this domain showed constitutive binding to mitotic chromatin independent of tonicity, which caused them to localize in the nucleus and remain bound to chromatin in the subsequent interphase without hypertonic stimulation. We analyzed the contribution of the CTD, DNA binding, and nuclear import and export signals to the subcellular localization of this factor. Our results indicated that cytoplasmic localization of NFAT5 in isotonic conditions required both the exclusion from mitotic DNA and active nuclear export in interphase. Finally, we identified several regions within the CTD of NFAT5, some of them overlapping with transactivation domains, which were separately capable of causing its exclusion from mitotic chromatin.Our results reveal a multipart mechanism regulating the subcellular localization of NFAT5. The transactivating module of NFAT5 switches its function from an stimulus-specific activator of transcription in interphase to an stimulus-independent repressor of binding to DNA in mitosis. This mechanism, together with export signals acting in interphase, resets the cytoplasmic localization of NFAT5 and prevents its nuclear accumulation and association with DNA in the absence of hypertonic stress
- âŠ