50,947 research outputs found

    VLA Observations of H I in the Helix Nebula (NGC 7293)

    Get PDF
    We report the detection of 21-cm line emission from H I in the planetary nebula NGC 7293 (the Helix). The observations, made with the Very Large Array, show the presence of a ring of atomic hydrogen that is associated with the outer portion of the ionized nebula. This ring is most probably gas ejected in the AGB phase that has been subsequently photodissociated by radiation from the central star. The H I emission spreads over about 50 km/s in radial velocity. The mass in H I is approximately 0.07 solar masses, about three times larger than the mass in molecular hydrogen and comparable with the mass in ionized hydrogen.Comment: 19 pages, 9 figure

    The Berry-Tabor conjecture for spin chains of Haldane-Shastry type

    Get PDF
    According to a long-standing conjecture of Berry and Tabor, the distribution of the spacings between consecutive levels of a "generic'' integrable model should follow Poisson's law. In contrast, the spacings distribution of chaotic systems typically follows Wigner's law. An important exception to the Berry-Tabor conjecture is the integrable spin chain with long-range interactions introduced by Haldane and Shastry in 1988, whose spacings distribution is neither Poissonian nor of Wigner's type. In this letter we argue that the cumulative spacings distribution of this chain should follow the "square root of a logarithm'' law recently proposed by us as a characteristic feature of all spin chains of Haldane-Shastry type. We also show in detail that the latter law is valid for the rational counterpart of the Haldane-Shastry chain introduced by Polychronakos.Comment: LaTeX with revtex4, 6 pages, 6 figure

    Discovery of a deep Seyfert-2 galaxy at z = 0.222 behind NGC 300

    Get PDF
    We report on the unveiling of the nature of the unidentified X-ray source 3XMM J005450.3-373849 as a Seyfert-2 galaxy located behind the spiral galaxy NGC 300 using Hubble Space Telescope data, new spectroscopic Gemini observations and available XMM-Newton and Chandra data. We show that the X-ray source is positionally coincident with an extended optical source, composed by a marginally resolved nucleus/bulge, surrounded by an elliptical disc-like feature and two symmetrical outer rings. The optical spectrum is typical of a Seyfert-2 galaxy redshifted to z=0.222 +/- 0.001, which confirms that the source is not physically related to NGC 300. At this redshift the source would be located at 909+/-4 Mpc (comoving distance in the standard model). The X-ray spectra of the source are well-fitted by an absorbed power-law model. By tying NHN_\mathrm{H} between the six available spectra, we found a variable index Γ\Gamma running from ~2 in 2000-2001 years, to 1.4-1.6 in the 2005-2014 period. Alternatively, by tying Γ\Gamma, we found variable absorption columns of N_H ~ 0.34 x 10−2210^{-22} cm−2^{-2} in 2000-2001 years, and 0.54-0.75 x 10−2210^{-22} cm−2^{-2} in the 2005-2014 period. Although we cannot distinguish between an spectral or absorption origin, from the derived unabsorbed X-ray fluxes, we are able to assure the presence of long-term X-ray variability. Furthermore, the unabsorbed X-ray luminosities of 0.8-2 x 1043^{43} erg s−1^{-1} derived in the X-ray band are in agreement with a weakly obscured Seyfert-2 AGN at z≈0.22z \approx 0.22.Comment: MNRAS, accepte

    Universality Classes of Diagonal Quantum Spin Ladders

    Full text link
    We find the classification of diagonal spin ladders depending on a characteristic integer NpN_p in terms of ferrimagnetic, gapped and critical phases. We use the finite algorithm DMRG, non-linear sigma model and bosonization techniques to prove our results. We find stoichiometric contents in cuprate CuO2CuO_2 planes that allow for the existence of weakly interacting diagonal ladders.Comment: REVTEX4 file, 3 color figures, 1 tabl

    Application of Single-Station Sigma and Site-Response Characterization in a Probabilistic Seismic-Hazard Analysis for a New Nuclear Site

    Get PDF
    Aleatory variability in ground-motion prediction, represented by the standard deviation (sigma) of a ground-motion prediction equation, exerts a very strong influence on the results of probabilistic seismic-hazard analysis (PSHA). This is especially so at the low annual exceedance frequencies considered for nuclear facilities; in these cases, even small reductions in sigma can have a marked effect on the hazard estimates. Proper separation and quantification of aleatory variability and epistemic uncertainty can lead to defensible reductions in sigma. One such approach is the single-station sigma concept, which removes that part of sigma corresponding to repeatable site-specific effects. However, the site-to-site component must then be constrained by site-specific measurements or else modeled as epistemic uncertainty and incorporated into the modeling of site effects. The practical application of the single-station sigma concept, including the characterization of the dynamic properties of the site and the incorporation of site-response effects into the hazard calculations, is illustrated for a PSHA conducted at a rock site under consideration for the potential construction of a nuclear power plant.Civil, Architectural, and Environmental Engineerin
    • …
    corecore