According to a long-standing conjecture of Berry and Tabor, the distribution
of the spacings between consecutive levels of a "generic'' integrable model
should follow Poisson's law. In contrast, the spacings distribution of chaotic
systems typically follows Wigner's law. An important exception to the
Berry-Tabor conjecture is the integrable spin chain with long-range
interactions introduced by Haldane and Shastry in 1988, whose spacings
distribution is neither Poissonian nor of Wigner's type. In this letter we
argue that the cumulative spacings distribution of this chain should follow the
"square root of a logarithm'' law recently proposed by us as a characteristic
feature of all spin chains of Haldane-Shastry type. We also show in detail that
the latter law is valid for the rational counterpart of the Haldane-Shastry
chain introduced by Polychronakos.Comment: LaTeX with revtex4, 6 pages, 6 figure