32 research outputs found

    An annotated list of ornamentals naturally found infected by Brevipalpus mite-transmitted viruses

    Get PDF
    The first cases of ornamental plants found infected by Brevipalpus transmitted viruses (BTV) were described in the 1990's from the region of Piracicaba, State of São Paulo, Brazil; subsequent cases were from other regions in the country and other American countries. Currently, 37 ornamental plant species (for the sake of simplicity, orchids being considered as a single species), belonging to 18 families of dicotyledons, have been reported hosting BTV. Because of the non systemic type of infection of these viruses, the localized diseases they cause are unimportant usually, but they have the potential to cause economic losses if severe outbreaks of Brevipalpus mite populations occur. Some ornamentals may serve as reservoirs to BTV known to cause serious damage to food crops as Citrus leprosis virus- cytoplasmic type (CiLV-C), passion fruit green spot virus (PFGSV) and Coffee ringspot virus (CoRSV).Os primeiros casos de plantas ornamentais encontradas naturalmente infetadas por vírus transmitidos por Brevipalpus (Acari: Tenuipalpidae) (VTB) foram registrados nos anos 1990 na região de Piracicaba, Estado de São Paulo, e ocorrências subseqüentes foram observadas em várias outras regiões do país e de outros países das Américas. Atualmente acham-se relatadas 37 espécies de ornamentais (para efeito de simplificação, orquídeas foram consideradas como única espécie) pertencentes a 18 famílias botânicas. Pelo fato de causarem apenas infecções localizadas, geralmente nas folhas, VTB em ornamentais não causam preocupações aos produtores, mas potencialmente podem causar perdas econômicas se ocorrerem explosões populacionais do ácaro vetor. Plantas ornamentais podem servir de reservatório de VTB de importância econômica como os vírus da leprose dos citros-tipo citoplasmático (CiLV-C), da mancha verde do maracujá (PFGSV) e da mancha anular do cafeeiro (CoRSV)

    DNA BARCODING FOR TARGETING INVASIVE SPECIES AND NATURAL CONTROL AGENTS IN THE CARIBBEAN

    No full text
    The development of DNA barcoding for species identification is a broad tool that has been emphasized in the recent decade. Since the 1980's, the increase of trade and exchange of goods has raised the number of invasive species reported. The new invaders are threatening the development of a sustainable agriculture, the preservation of natural habitats and raising the costs for urban landscaping. Molecular barcoding is part of an innovative approach to accurately identify and fingerprint life species. Barcoding methods are a valuable application for both pest ecology and biocontrol agents. Several universal mitochondrial and nuclear molecular markers of conservative regions such as Cytochrome Oxidase I (COI) and Internal transcribed spacer (ITS) have been used in barcoding for fingerprinting both pests and their natural enemies and have demonstrated high replication of results. Moreover, the development of new molecular markers targeting important arthropod and microorganism species has elucidated their taxonomic status. The objectives at the Center of Excellence for Quarantine and Invasive Species (CEQIS) laboratory are to generate and apply DNA barcoding tools and to build an integrative database of pests and beneficial organisms within the Caribbean and track their pathways. Current work at the laboratory addresses the identification of parasitoid communities associated to whiteflies in Solanaceae, Leguminosae and alternate host plants. Plant host species are also identified by both classic morphology and DNA barcoding. Barcoding clarifies discrepancies between morphological and molecular identification. Molecular approaches used clarify the taxonomy of the parasitoid complex associated to the Harrisia cactus mealybug, Hypogeococcus pungens. So far, other biological control agents have been targeted for barcoding at the CEQIS and include mites, coleopteran and coccinellid
    corecore