6 research outputs found

    Map of the study area showing the eight sampling modules along the 520-km section of the BR-319 highway, Central Amazonia.

    No full text
    <p>Map of the study area showing the eight sampling modules along the 520-km section of the BR-319 highway, Central Amazonia.</p

    Bats captured in eight modules along the BR-319 highway, Central Amazonia, Brazil.

    No full text
    <p>Bats captured in eight modules along the BR-319 highway, Central Amazonia, Brazil.</p

    Relationship between rank values (mean number of captures weighted by vegetation clutter of each module) and wing morphology (wing load and aspect ratio) of 21 bat species captured along the BR-319 highway, Central Amazonia.

    No full text
    <p>Relationship between rank values (mean number of captures weighted by vegetation clutter of each module) and wing morphology (wing load and aspect ratio) of 21 bat species captured along the BR-319 highway, Central Amazonia.</p

    Relationship between bat abundance and the gradient of vegetation clutter.

    No full text
    <p>The horizontal order of the sampling modules was based on the gradient in vegetation clutter. The vertical order of species was based on the average number of captures weighted by vegetation clutter of each module, as indicated by rank values. Species with higher rank values are placed near the top of the graph. Black squares represent gleaning animalivorous bats, white squares canopy frugivores, grey squares understory frugivores, and hatched squares the nectarivore.</p

    Ground-Vegetation Clutter Affects Phyllostomid Bat Assemblage Structure in Lowland Amazonian Forest

    Get PDF
    <div><p>Vegetation clutter is a limiting factor for bats that forage near ground level, and may determine the distribution of species and guilds. However, many studies that evaluated the effects of vegetation clutter on bats have used qualitative descriptions rather than direct measurements of vegetation density. Moreover, few studies have evaluated the effect of vegetation clutter on a regional scale. Here, we evaluate the influence of the physical obstruction of vegetation on phyllostomid-bat assemblages along a 520 km transect in continuous Amazonian forest. We sampled bats using mist nets in eight localities during 80 nights (3840 net-hours) and estimated the ground-vegetation density with digital photographs. The total number of species, number of animalivorous species, total number of frugivorous species, number of understory frugivorous species, and abundance of canopy frugivorous bats were negatively associated with vegetation clutter. The bat assemblages showed a nested structure in relation to degree of clutter, with animalivorous and understory frugivorous bats distributed throughout the vegetation-clutter gradient, while canopy frugivores were restricted to sites with more open vegetation. The species distribution along the gradient of vegetation clutter was not closely associated with wing morphology, but aspect ratio and wing load differed between frugivores and animalivores. Vegetation structure plays an important role in structuring assemblages of the bats at the regional scale by increasing beta diversity between sites. Differences in foraging strategy and diet of the guilds seem to have contributed more to the spatial distribution of bats than the wing characteristics of the species alone.</p></div

    Supplementary Material for: Thrombolysis for acute wake-up and unclear onset strokes with alteplase at 0.6 mg/kg in clinical practice: THAWS2 Study

    No full text
    Introduction: The aim of this study was to determine the safety and efficacy of intravenous (IV) alteplase at 0.6 mg/kg for patients with acute wake-up or unclear onset strokes in clinical practice. Methods: This multicenter observational study enrolled acute ischemic stroke patients with last-known-well time >4.5 h who had mismatch between DWI and FLAIR and were treated with IV alteplase. The safety outcomes were symptomatic intracranial hemorrhage (sICH) after thrombolysis, all-cause deaths and all adverse events. The efficacy outcomes were favorable outcome defined as an mRS score of 0–1 or recovery to the same mRS score as the premorbid score, complete independence defined as an mRS score of 0–1 at 90 days, and change in NIHSS at 24 h from baseline. Results: Sixty-six patients (35 females; mean age, 74±11 years; premorbid complete independence, 54 [82%]; median NIHSS on admission, 11) were enrolled at 15 hospitals. Two patients (3%) had sICH. Median NIHSS changed from 11 (IQR, 6.75–16.25) at baseline to 5 (3–12.25) at 24 h after alteplase initiation (change, –4.8±8.1). At discharge, 31 patients (47%) had favorable outcome and 29 (44%) had complete independence. None died within 90 days. Twenty-three (35%) also underwent mechanical thrombectomy (no sICH, NIHSS change of –8.5±7.3), of whom 11 (48%) were completely independent at discharge. Conclusions: In real-world clinical practice, IV alteplase for unclear onset stroke patients with DWI-FLAIR mismatch provided safe and efficacious outcomes comparable to those in previous trials. Additional mechanical thrombectomy was performed safely in them
    corecore