7,063 research outputs found

    Revisiting the distance to the nearest UHECR source: Effects of extra-galactic magnetic fields

    Full text link
    We update the constraints on the location of the nearest UHECR source. By analyzing recent data from the Pierre Auger Observatory using state-of-the-art CR propagation models, we reaffirm the need of local sources with a distance less than 25-100 Mpc, depending on mass composition. A new fast semi-analytical method for the propagation of UHECR in environments with turbulent magnetic fields is developed. The onset of an enhancement and a low-energy magnetic horizon of cosmic rays from sources located within a particular distance range is demonstrated. We investigate the distance to the nearest source, taking into account these magnetic field effects. The results obtained highlight the robustness of our constrained distances to the nearest source

    Sporopollenin as an efficient green support for covalent immobilization of a lipase

    Get PDF
    Sporopollenin exine capsules (SECs), derived from the spores of Lycopodium clavatum, have been functionalised with 1,n-diamines and the resulting aminoalkyl microcapsules used to immobilize Candida antarctica lipase B (Cal B) via a glutaradehyde-based diimine covalent linker. The supported enzyme efficiently catalyzes the esterification of oleic acid with ethanol. Initial rates using the SEC-CalBs were comparable to the commercial enzyme Novozym 435, but displayed up to 20-fold higher specific activity. The supported enzymes could also be recycled and after four cycles displayed only a modest decrease in conversions. In a kinetic resolution the SEC-CalBs efficiently acetylated rac-1-phenylethanol, with conversions up to 37% after 5 hours and product enantiomeric excesses of >99%. Related to this, the dynamic resolution of rac-1-phenylethylamine, in the presence of Pd-BaSO₄ and ammonium formate, led to the acetylated amine with a 94% conversion and >99% ee

    Developmental abnormalities in the cornea of a mouse model for Marfan syndrome

    Get PDF
    Elastic fibres provide tissues with elasticity and flexibility. In the healthy human cornea, elastic fibres are limited to the posterior region of the peripheral stroma, but their specific functional role remains elusive. Here, we examine the physical and structural characteristics of the cornea during development in the mgΔloxPneo dominant-negative mouse model for Marfan syndrome, in which the physiological extracellular matrix of its elastic-fibre rich tissues is disrupted by the presence of a dysfunctional fibrillin-1 glycoprotein. Optical coherence tomography demonstrated a reduced corneal thickness in the mutant compared to wild type mice from embryonic day 16.5 until adulthood. X-ray scattering and electron microscopy revealed a disruption to both the elastic fibre and collagen fibril ultrastructure in the knockout mice, as well as abnormally low levels of the proteoglycan decorin. It is suggested that these alterations might be a result of increased transforming growth factor beta signalling. To conclude, this study has demonstrated corneal structure and ultrastructure to be altered when fibrillin-1 is disrupted and has provided insights into the role of fibrillin-1 in developing a functional cornea

    Quantitative Proteomic Analysis Reveals Changes in the Benchmark Corynebacterium pseudotuberculosis Biovar Equi Exoproteome after Passage in a Murine Host

    Get PDF
    Corynebacterium pseudotuberculosis biovar equi is the etiologic agent of ulcerative lymphangitis. To investigate proteins that could be related to the virulence of this pathogen, we combined an experimental passage process using a murine model and high-throughput proteomics with a mass spectrometry, data-independent acquisition (LC-MSE) approach to identify and quantify the proteins released into the supernatants of strain 258_equi. To our knowledge, this approach allowed characterization of the exoproteome of a C. pseudotuberculosis equi strain for the first time. Interestingly, the recovery of this strain from infected mouse spleens induced a change in its virulence potential, and it became more virulent in a second infection challenge. Proteomic screening performed from culture supernatant of the control and recovered conditions revealed 104 proteins that were differentially expressed between the two conditions. In this context, proteomic analysis of the recovered condition detected the induction of proteins involved in bacterial pathogenesis, mainly related to iron uptake. In addition, KEGG enrichment analysis showed that ABC transporters, bacterial secretion systems and protein export pathways were significantly altered in the recovered condition. These findings show that secretion and secreted proteins are key elements in the virulence and adaptation of C. pseudotuberculosis. Collectively, bacterial pathogenesis-related proteins were identified that contribute to the processes of adherence, intracellular growth and evasion of the immune system. Moreover, this study enhances our understanding of the factors that may influence the pathogenesis of C. pseudotuberculosis.Fil: Marques Da Silva, Wanderson. Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas; Brasil. Institut National de la Recherche Agronomique; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Carvalho, Rodrigo D. De Oliveira. Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas; BrasilFil: Dorella, Fernanda A.. Universidade Federal de Minas Gerais; BrasilFil: Folador, Edson L.. Universidade Federal da Paraíba. Centro de Biotecnologia; BrasilFil: Souza, Gustavo H. M. F.. Waters Corporation; BrasilFil: Pimenta, Adriano M. C.. Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas; BrasilFil: Figueiredo, Henrique C. P.. Universidade Federal de Minas Gerais; BrasilFil: Le Loir, Yves. Institut National de la Recherche Agronomique; FranciaFil: Silva, Artur. Universidade Federal do Pará; BrasilFil: Azevedo, Vasco. Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas; Brasi

    Photochemically-induced protein tyrosine nitration in vitro and in cellula by 5-methyl-1,4-dinitro-1H-imidazole (DNI): synthesis and biochemical characterization

    Get PDF
    Natalia Ríos: Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay -- Adrian Aicardo: Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Departamento de Nutrición Clínica, Escuela de Nutrición, Universidad de la República, Montevideo, Uruguay -- Cecilia Chavarría: Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay -- Rodrigo Ivagnes: Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay -- Mauricio Mastrogiovanni: Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay -- Rafael Radi: Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay -- José M. Souza: Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay. Contacto: [email protected] photochemical nitrating agent 5-methyl-1,4-dinitro-1H-imidazole (DNI) has been recently described as an effective tool for nitrating tyrosine residues in proteins under 390 nm irradiation (Long T. et al., 2021). Herein, we describe the one-step synthesis of DNI from the precursor 4-methyl-5-nitro-1H-imidazole with good yield (66%) and high purity (>99%). Spectral analysis of DNI reveals two maximum peaks (228 and 290 nm) with maximum nitration yields and kinetics occurring at 290 nm. Electron paramagnetic resonance (EPR)- and mass spectrometry (MS)- spin trapping analysis evidenced the formation of nitrogen dioxide (•NO2) upon irradiation of DNI, implying the homolysis of the N–N bond in the DNI molecule. Irradiation of DNI at 290, 390 nm, or UVA light (315–400 nm), produced tyrosine nitration, with yields approaching ca. 30% with respect to DNI at 290 nm exposure. Indeed, using alpha-synuclein as a model protein, the main protein post-translational modification triggered by DNI was the generation of 3-nitrotyrosine as shown by MS analysis. Additionally, the formation of di-tyrosine was also observed. Finally, intracellular •NO2 production upon DNI photolysis in bovine aortic endothelial cells was evidenced by the nitration of the tyrosine analog probe p-hydroxyphenylacetic acid (PHPA) and cellular protein tyrosine nitration

    Is Urinary Density An Adequate Predictor Of Urinary Osmolality?

    Get PDF
    Background: Urinary density (UD) has been routinely used for decades as a surrogate marker for urine osmolality (U-osm). We asked if UD can accurately estimate U-osm both in healthy subjects and in different clinical scenarios of kidney disease. Methods: UD was assessed by refractometry. U-osm was measured by freezing point depression in spot urines obtained from healthy volunteers (N = 97) and in 319 inpatients with acute kidney injury (N = 95), primary glomerulophaties (N = 118) or chronic kidney disease (N = 106). Results: UD and U-osm correlated in all groups (p < 0.05). However, a wide range of U-osm values was associated with each UD value. When UD was <= 1.010, 28.4% of samples had U-osm above 350 mOsm/kg. Conversely, in 61.6% of samples with UD above 1.020, U-osm was below 600 mOsm/kg. As expected, U-osm exhibited a strong relationship with serum creatinine (S-creat), whereas a much weaker correlation was found between UD and Screat. Conclusion: We found that UD is not a substitute for U-osm. Although UD was significantly correlated with U-osm, the wide dispersion makes it impossible to use UD as a dependable clinical estimate of U-osm. Evaluation of the renal concentrating ability should be based on direct determination of U-osm.1
    corecore