14,800 research outputs found

    Sagittarius: The Nearest Dwarf Galaxy

    Get PDF
    We have discovered a new Galactic satellite galaxy in the constellation of Sagittarius. The Sagittarius dwarf galaxy is the nearest galaxy known, subtends an angle of >10> 10 degrees on the sky, lies at a distance of 24 \kpc from the Sun, \sim 16 \kpc from the centre of the Milky Way. Itis comparable in size and luminosity to the largest dwarf spheroidal, has a well populated red horizontal branch with a blue HB extension; a substantial carbon star population; and a strong intermediate age stellar component with evidence of a metallicity spread. Isodensity maps show it to be markedly elongated along a direction pointing towards the Galactic centre and suggest that it has been tidally distorted. The close proximity to the Galactic centre, the morphological appearance and the radial velocity of 140 km/s indicate that this system must have undergone at most very few close orbital encounters with the Milky Way. It is currently undergoing strong tidal disruption prior to being integrated into the Galaxy. Probably all of the four globular clusters, M54, Arp 2, Ter 7 and Ter 8, are associated with the Sagittarius dwarf galaxy, and will probably share the fate of their progenitor.Comment: MNRAS in press, 22pp uuencoded PS file, 26 printed figures available on request from [email protected]

    Radiative return at NLO and the measurement of the hadronic cross-section in electron-positron annihilation

    Get PDF
    Electron-positron annihilation into hadrons plus an energetic photon from initial state radiation allows the hadronic cross-section to be measured over a wide range of energies. The full next-to-leading order QED corrections for the cross-section for e^+ e^- annihilation into a real tagged photon and a virtual photon converting into hadrons are calculated where the tagged photon is radiated off the initial electron or positron. This includes virtual and soft photon corrections to the process e^+ e^- \to \gamma +\gamma^* and the emission of two real hard photons: e^+ e^- \to \gamma + \gamma + \gamma^*. A Monte Carlo generator has been constructed, which incorporates these corrections and simulates the production of two charged pions or muons plus one or two photons. Predictions are presented for centre-of-mass energies between 1 and 10 GeV, corresponding to the energies of DAPHNE, CLEO-C and B-meson factories.Comment: 13 pages, 15 figure

    Topological regularization and self-duality in four-dimensional anti-de Sitter gravity

    Full text link
    It is shown that the addition of a topological invariant (Gauss-Bonnet term) to the anti-de Sitter (AdS) gravity action in four dimensions recovers the standard regularization given by holographic renormalization procedure. This crucial step makes possible the inclusion of an odd parity invariant (Pontryagin term) whose coupling is fixed by demanding an asymptotic (anti) self-dual condition on the Weyl tensor. This argument allows to find the dual point of the theory where the holographic stress tensor is related to the boundary Cotton tensor as Tji=±(ℓ2/8πG)CjiT_{j}^{i}=\pm (\ell ^{2}/8\pi G)C_{j}^{i}, which has been observed in recent literature in solitonic solutions and hydrodynamic models. A general procedure to generate the counterterm series for AdS gravity in any even dimension from the corresponding Euler term is also briefly discussed.Comment: 13 pages, no figures; enlarged discussion on self-duality condition for AAdS spacetimes, references added, final version for PR

    Fully dissipative relativistic lattice Boltzmann method in two dimensions

    Full text link
    In this paper, we develop and characterize the fully dissipative Lattice Boltzmann method for ultra-relativistic fluids in two dimensions using three equilibrium distribution functions: Maxwell-J\"uttner, Fermi-Dirac and Bose-Einstein. Our results stem from the expansion of these distribution functions up to fifth order in relativistic polynomials. We also obtain new Gaussian quadratures for square lattices that preserve the spatial resolution. Our models are validated with the Riemann problem and the limitations of lower order expansions to calculate higher order moments are shown. The kinematic viscosity and the thermal conductivity are numerically obtained using the Taylor-Green vortex and the Fourier flow respectively and these transport coefficients are compared with the theoretical prediction from Grad's theory. In order to compare different expansion orders, we analyze the temperature and heat flux fields on the time evolution of a hot spot

    Charge asymmetries of top quarks: a window to new physics at hadron colliders

    Get PDF
    With the next start of LHC, a huge production of top quarks is expected. There are several models that predict the existence of heavy colored resonances decaying to top quarks in the TeV energy range. A peak in the differential cross section could reveal the existence of such a resonance, but this is experimentally challenging, because it requires selecting data samples where top and antitop quarks are highly boosted. Nonetheless, the production of such resonances might generate a sizable charge asymmetry of top versus antitop quarks. We consider a toy model with general flavour independent couplings of the resonance to quarks, of both vector and axial-vector kind. The charge asymmetry turns out to be a more powerful observable to detect new physics than the differential cross section, because its highest statistical significance is achieved with data samples of top-antitop quark pairs of low invariant masses

    Inference with Imperfect Randomization: The Case of the Perry Preschool Program

    Get PDF
    This paper considers the problem of making inferences about the effects of a program on multiple outcomes when the assignment of treatment status is imperfectly randomized. By imperfect randomization we mean that treatment status is reassigned after an initial randomization on the basis of characteristics that may be observed or unobserved by the analyst. We develop a partial identification approach to this problem that makes use of information limiting the extent to which randomization is imperfect to show that it is still possible to make nontrivial inferences about the effects of the program in such settings. We consider a family of null hypotheses in which each null hypothesis specifies that the program has no effect on one of several outcomes of interest. Under weak assumptions, we construct a procedure for testing this family of null hypotheses in a way that controls the familywise error rate – the probability of even one false rejection – infinite samples. We develop our methodology in the context of a reanalysis of the HighScope Perry Preschool program. We find statistically significant effects of the program on a number of different outcomes of interest, including outcomes related to criminal activity for males and females, even after accounting for the imperfectness of the randomization and the multiplicity of null hypotheses.multiple testing, multiple outcomes, randomized trial, randomization tests, imperfect randomization, Perry Preschool Program, program evaluation, familywise error rate, exact inference, partial identification

    Dissipative vortex solitons in 2D-lattices

    Get PDF
    We report the existence of stable symmetric vortex-type solutions for two-dimensional nonlinear discrete dissipative systems governed by a cubic-quintic complex Ginzburg-Landau equation. We construct a whole family of vortex solitons with a topological charge S = 1. Surprisingly, the dynamical evolution of unstable solutions of this family does not alter significantly their profile, instead their phase distribution completely changes. They transform into two-charges swirl-vortex solitons. We dynamically excite this novel structure showing its experimental feasibility.Comment: 4 pages, 20 figure
    • …
    corecore