127 research outputs found

    Theory of Magnetic Edge States in Chiral Graphene Nanoribbons

    Full text link
    Using a model Hamiltonian approach including electron-electron interactions, we systematically investigate the electronic structure and magnetic properties of chiral graphene nanoribbons. We show that the presence of magnetic edge states is an intrinsic feature of smooth graphene nanoribbons with chiral edges, and discover a number of structure-property relations. Specifically, we study the dependence of magnetic moments and edge-state energy splittings on the nanoribbon width and chiral angle as well as the role of environmental screening effects. Our results address a recent experimental observation of signatures of magnetic ordering in chiral graphene nanoribbons and provide an avenue towards tuning their properties via the structural and environmental degrees of freedom.Comment: 4 pages, 5 figure

    Heat pumping in nanomechanical systems

    Get PDF
    We propose using a phonon pumping mechanism to transfer heat from a cold to a hot body using a propagating modulation of the medium connecting the two bodies. This phonon pump can cool nanomechanical systems without the need for active feedback. We compute the lowest temperature that this refrigerator can achieve.Comment: 4 pages, 1 figure, published versio

    The role of the disorder range and electronic energy in the graphene nanoribbons perfect transmission

    Get PDF
    Numerical calculations based on the recursive Green's functions method in the tight-binding approximation are performed to calculate the dimensionless conductance gg in disordered graphene nanoribbons with Gaussian scatterers. The influence of the transition from short- to long-ranged disorder on gg is studied as well as its effects on the formation of a perfectly conducting channel. We also investigate the dependence of electronic energy on the perfectly conducting channel. We propose and calculate a backscattering estimative in order to establish the connection between the perfectly conducting channel (with g=1g=1) and the amount of intervalley scattering.Comment: 7 pages, 9 figures. To be published on Phys. Rev.

    Proposal for a single-molecule field-effect transistor for phonons

    Full text link
    We propose a practical realization of a field-effect transistor for phonons. Our device is based on a single ionic polymeric molecule and it gives modulations as large as -25% in the thermal conductance for feasible temperatures and electric field magnitudes. Such effect can be achieved by reversibly switching the acoustic torsion mode into an optical mode through the coupling of an applied electric field to the dipole moments of the monomers. This device can pave the way to the future development of phononics at the nanoscale or molecular scale
    corecore